LiLT-SER-ES / README.md
kavg's picture
End of training
7ec247c verified
metadata
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
  - generated_from_trainer
datasets:
  - xfun
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: LiLT-SER-ES
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: xfun
          type: xfun
          config: xfun.es
          split: validation
          args: xfun.es
        metrics:
          - name: Precision
            type: precision
            value: 0.6718889883616831
          - name: Recall
            type: recall
            value: 0.6733961417676088
          - name: F1
            type: f1
            value: 0.6726417208155948
          - name: Accuracy
            type: accuracy
            value: 0.7462640815388152

LiLT-SER-ES

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5588
  • Precision: 0.6719
  • Recall: 0.6734
  • F1: 0.6726
  • Accuracy: 0.7463

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.2279 8.2 500 0.6790 0.5205 1.2508 0.4589 0.6012
0.032 16.39 1000 0.6936 0.5885 1.9637 0.6321 0.5505
0.0073 24.59 1500 0.7351 0.6175 1.6711 0.5795 0.6608
0.0479 32.79 2000 0.7405 0.6422 1.8259 0.6265 0.6586
0.0666 40.98 2500 0.7424 0.6349 1.8343 0.5937 0.6824
0.0006 49.18 3000 0.7475 0.6536 2.0575 0.6512 0.6559
0.0084 57.38 3500 0.7138 0.6415 2.4488 0.6758 0.6106
0.0002 65.57 4000 0.7571 0.6468 1.9641 0.6406 0.6532
0.0005 73.77 4500 2.2976 0.6699 0.6429 0.6561 0.7413
0.0003 81.97 5000 2.1562 0.6287 0.6653 0.6465 0.7468
0.0007 90.16 5500 2.2806 0.6435 0.6689 0.6560 0.7435
0.0002 98.36 6000 2.0508 0.6294 0.6734 0.6506 0.7538
0.0 106.56 6500 2.2626 0.6602 0.6765 0.6683 0.7498
0.0 114.75 7000 2.3467 0.6687 0.6492 0.6588 0.7409
0.0 122.95 7500 2.4430 0.6773 0.6734 0.6754 0.7447
0.0 131.15 8000 2.3653 0.6643 0.6765 0.6704 0.7476
0.0 139.34 8500 2.2903 0.6567 0.6824 0.6693 0.7498
0.0 147.54 9000 2.4458 0.6536 0.6824 0.6677 0.7440
0.0 155.74 9500 2.5953 0.6703 0.6685 0.6694 0.7423
0.0 163.93 10000 2.5588 0.6719 0.6734 0.6726 0.7463

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1