Edit model card

LiLT-SER-DE

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1833
  • Precision: 0.7268
  • Recall: 0.7854
  • F1: 0.7550
  • Accuracy: 0.7817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.2776 10.42 500 0.7098 0.6660 1.4820 0.6266 0.7106
0.0386 20.83 1000 0.7884 0.7195 1.3364 0.6868 0.7556
0.002 31.25 1500 0.8102 0.7350 1.4865 0.7000 0.7738
0.0043 41.67 2000 0.7965 0.7167 1.5473 0.7050 0.7289
0.0009 52.08 2500 0.7797 0.7357 1.8408 0.7371 0.7342
0.0003 62.5 3000 0.7841 0.7279 1.9387 0.7021 0.7556
0.0044 72.92 3500 0.7900 0.7402 1.7595 0.7292 0.7516
0.0005 83.33 4000 0.7677 0.7370 2.0830 0.7084 0.7680
0.0001 93.75 4500 0.7746 0.7555 2.0764 0.7301 0.7827
0.0001 104.17 5000 0.7716 0.7441 2.0912 0.7158 0.7747
0.0 114.58 5500 0.7764 0.7572 2.1803 0.7275 0.7894
0.0 125.0 6000 0.7809 0.7576 2.1028 0.7384 0.7778
0.0001 135.42 6500 0.7812 0.7422 2.0825 0.7240 0.7614
0.0001 145.83 7000 0.7882 0.7481 2.0649 0.7244 0.7734
0.0001 156.25 7500 0.7789 0.7536 2.1535 0.7324 0.7760
0.0 166.67 8000 0.7760 0.7491 2.2120 0.7307 0.7685
0.0 177.08 8500 0.7941 0.7615 1.9997 0.75 0.7734
0.0 187.5 9000 0.7854 0.7588 2.0939 0.7355 0.7836
0.0 197.92 9500 2.1707 0.7262 0.7805 0.7524 0.7825
0.0 208.33 10000 2.1833 0.7268 0.7854 0.7550 0.7817

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
4
Safetensors
Model size
284M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kavg/LiLT-SER-DE

Finetuned
(29)
this model
Finetunes
1 model

Evaluation results