Edit model card

layoutlmv3-test

This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8036
  • Precision: 0.8973
  • Recall: 0.9200
  • F1: 0.9085
  • Accuracy: 0.8481

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 5.26 100 0.5115 0.8071 0.8624 0.8338 0.8407
No log 10.53 200 0.4661 0.8730 0.9086 0.8905 0.8546
No log 15.79 300 0.5613 0.8914 0.9091 0.9001 0.8552
No log 21.05 400 0.6767 0.8937 0.8982 0.8959 0.8507
0.3022 26.32 500 0.7020 0.8935 0.9165 0.9049 0.8626
0.3022 31.58 600 0.7108 0.9040 0.9220 0.9129 0.8591
0.3022 36.84 700 0.7378 0.9049 0.9175 0.9112 0.8517
0.3022 42.11 800 0.7892 0.9026 0.9210 0.9117 0.8537
0.3022 47.37 900 0.8133 0.8995 0.9205 0.9099 0.8490
0.0223 52.63 1000 0.8036 0.8973 0.9200 0.9085 0.8481

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
7
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for katik0/layoutlmv3-test

Finetuned
(210)
this model

Evaluation results