KF-DeBERTa
์นด์นด์ค๋ฑ ํฌ & ์ํ์๊ฐ์ด๋์์ ํ์ตํ ๊ธ์ต ๋๋ฉ์ธ ํนํ ์ธ์ด๋ชจ๋ธ์ ๊ณต๊ฐํฉ๋๋ค.
Model description
- KF-DeBERTa๋ ๋ฒ์ฉ ๋๋ฉ์ธ ๋ง๋ญ์น์ ๊ธ์ต ๋๋ฉ์ธ ๋ง๋ญ์น๋ฅผ ํจ๊ป ํ์ตํ ์ธ์ด๋ชจ๋ธ ์ ๋๋ค.
- ๋ชจ๋ธ ์ํคํ
์ณ๋ DeBERTa-v2๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ํ์ตํ์์ต๋๋ค.
- ELECTRA์ RTD๋ฅผ training objective๋ก ์ฌ์ฉํ DeBERTa-v3๋ ์ผ๋ถ task(KLUE-RE, WoS, Retrieval)์์ ์๋นํ ๋ฎ์ ์ฑ๋ฅ์ ํ์ธํ์ฌ ์ต์ข ์ํคํ ์ณ๋ DeBERTa-v2๋ก ๊ฒฐ์ ํ์์ต๋๋ค.
- ๋ฒ์ฉ ๋๋ฉ์ธ ๋ฐ ๊ธ์ต ๋๋ฉ์ธ downstream task์์ ๋ชจ๋ ์ฐ์ํ ์ฑ๋ฅ์ ํ์ธํ์์ต๋๋ค.
- ๊ธ์ต ๋๋ฉ์ธ downstream task์ ์ฒ ์ ํ ์ฑ๋ฅ๊ฒ์ฆ์ ์ํด ๋ค์ํ ๋ฐ์ดํฐ์ ์ ํตํด ๊ฒ์ฆ์ ์ํํ์์ต๋๋ค.
- ๋ฒ์ฉ ๋๋ฉ์ธ ๋ฐ ๊ธ์ต ๋๋ฉ์ธ์์ ๊ธฐ์กด ์ธ์ด๋ชจ๋ธ๋ณด๋ค ๋ ๋์ ์ฑ๋ฅ์ ๋ณด์ฌ์คฌ์ผ๋ฉฐ ํนํ KLUE Benchmark์์๋ RoBERTa-Large๋ณด๋ค ๋ ๋์ ์ฑ๋ฅ์ ํ์ธํ์์ต๋๋ค.
Usage
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained("kakaobank/kf-deberta-base")
tokenizer = AutoTokenizer.from_pretrained("kakaobank/kf-deberta-base")
text = "์นด์นด์ค๋ฑ
ํฌ์ ์ํ์๊ฐ์ด๋๊ฐ ๊ธ์ตํนํ ์ธ์ด๋ชจ๋ธ์ ๊ณต๊ฐํฉ๋๋ค."
tokens = tokenizer.tokenize(text)
print(tokens)
inputs = tokenizer(text, return_tensors="pt")
model_output = model(**inputs)
print(model_output)
Benchmark
- ๋ชจ๋ task๋ ์๋์ ๊ฐ์ ๊ธฐ๋ณธ์ ์ธ hyperparameter search๋ง ์ํํ์์ต๋๋ค.
- batch size: {16, 32}
- learning_rate: {1e-5, 3e-5, 5e-5}
- weight_decay: {0, 0.01}
- warmup_proportion: {0, 0.1}
KLUE Benchmark
Model | YNAT | KLUE-ST | KLUE-NLI | KLUE-NER | KLUE-RE | KLUE-DP | KLUE-MRC | WoS | AVG |
---|---|---|---|---|---|---|---|---|---|
F1 | Pearsonr/F1 | ACC | F1-Entity/F1-Char | F1-micro/AUC | UAS/LAS | EM/ROUGE | JGA/F1-S | ||
mBERT (Base) | 82.64 | 82.97/75.93 | 72.90 | 75.56/88.81 | 58.39/56.41 | 88.53/86.04 | 49.96/55.57 | 35.27/88.60 | 71.26 |
XLM-R (Base) | 84.52 | 88.88/81.20 | 78.23 | 80.48/92.14 | 57.62/57.05 | 93.12/87.23 | 26.76/53.36 | 41.54/89.81 | 72.28 |
XLM-R (Large) | 87.30 | 93.08/87.17 | 86.40 | 82.18/93.20 | 58.75/63.53 | 92.87/87.82 | 35.23/66.55 | 42.44/89.88 | 76.17 |
KR-BERT (Base) | 85.36 | 87.50/77.92 | 77.10 | 74.97/90.46 | 62.83/65.42 | 92.87/87.13 | 48.95/58.38 | 45.60/90.82 | 74.67 |
KoELECTRA (Base) | 85.99 | 93.14/85.89 | 86.87 | 86.06/92.75 | 62.67/57.46 | 90.93/87.07 | 59.54/65.64 | 39.83/88.91 | 77.34 |
KLUE-BERT (Base) | 86.95 | 91.01/83.44 | 79.87 | 83.71/91.17 | 65.58/68.11 | 93.07/87.25 | 62.42/68.15 | 46.72/91.59 | 78.50 |
KLUE-RoBERTa (Small) | 85.95 | 91.70/85.42 | 81.00 | 83.55/91.20 | 61.26/60.89 | 93.47/87.50 | 58.25/63.56 | 46.65/91.50 | 77.28 |
KLUE-RoBERTa (Base) | 86.19 | 92.91/86.78 | 86.30 | 83.81/91.09 | 66.73/68.11 | 93.75/87.77 | 69.56/74.64 | 47.41/91.60 | 80.48 |
KLUE-RoBERTa (Large) | 85.88 | 93.20/86.13 | 89.50 | 84.54/91.45 | 71.06/73.33 | 93.84/87.93 | 75.26/80.30 | 49.39/92.19 | 82.43 |
KF-DeBERTa (Base) | 87.51 | 93.24/87.73 | 88.37 | 89.17/93.30 | 69.70/75.07 | 94.05/87.97 | 72.59/78.08 | 50.21/92.59 | 82.83 |
- ๊ตต์๊ธ์จ๋ ๋ชจ๋ ๋ชจ๋ธ์ค ๊ฐ์ฅ๋์ ์ ์์ด๋ฉฐ, ๋ฐ์ค์ base ๋ชจ๋ธ ์ค ๊ฐ์ฅ ๋์ ์ ์์ ๋๋ค.
๊ธ์ต๋๋ฉ์ธ ๋ฒค์น๋งํฌ
Model | FN-Sentiment (v1) | FN-Sentiment (v2) | FN-Adnews | FN-NER | KorFPB | KorFiQA-SA | KorHeadline | Avg (FiQA-SA ์ ์ธ) |
---|---|---|---|---|---|---|---|---|
ACC | ACC | ACC | F1-micro | ACC | MSE | Mean F1 | ||
KLUE-RoBERTa (Base) | 98.26 | 91.21 | 96.34 | 90.31 | 90.97 | 0.0589 | 81.11 | 94.03 |
KoELECTRA (Base) | 98.26 | 90.56 | 96.98 | 89.81 | 92.36 | 0.0652 | 80.69 | 93.90 |
KF-DeBERTa (Base) | 99.36 | 92.29 | 97.63 | 91.80 | 93.47 | 0.0553 | 82.12 | 95.27 |
- FN-Sentiment: ๊ธ์ต๋๋ฉ์ธ ๊ฐ์ฑ๋ถ์
- FN-Adnews: ๊ธ์ต๋๋ฉ์ธ ๊ด๊ณ ์ฑ๊ธฐ์ฌ ๋ถ๋ฅ
- FN-NER: ๊ธ์ต๋๋ฉ์ธ ๊ฐ์ฒด๋ช ์ธ์
- KorFPB: FinancialPhraseBank ๋ฒ์ญ๋ฐ์ดํฐ
- Cite:
Malo, Pekka, et al. "Good debt or bad debt: Detecting semantic orientations in economic texts." Journal of the Association for Information Science and Technology 65.4 (2014): 782-796.
- Cite:
- KorFiQA-SA: FiQA-SA ๋ฒ์ญ๋ฐ์ดํฐ
- Cite:
Maia, Macedo & Handschuh, Siegfried & Freitas, Andre & Davis, Brian & McDermott, Ross & Zarrouk, Manel & Balahur, Alexandra. (2018). WWW'18 Open Challenge: Financial Opinion Mining and Question Answering. WWW '18: Companion Proceedings of the The Web Conference 2018. 1941-1942. 10.1145/3184558.3192301.
- Cite:
- KorHeadline: Gold Commodity News and Dimensions ๋ฒ์ญ๋ฐ์ดํฐ
- Cite:
Sinha, A., & Khandait, T. (2021, April). Impact of News on the Commodity Market: Dataset and Results. In Future of Information and Communication Conference (pp. 589-601). Springer, Cham.
- Cite:
๋ฒ์ฉ๋๋ฉ์ธ ๋ฒค์น๋งํฌ
Model | NSMC | PAWS | KorNLI | KorSTS | KorQuAD | Avg (KorQuAD ์ ์ธ) |
---|---|---|---|---|---|---|
ACC | ACC | ACC | spearman | EM/F1 | ||
KLUE-RoBERTa (Base) | 90.47 | 84.79 | 81.65 | 84.40 | 86.34/94.40 | 85.33 |
KoELECTRA (Base) | 90.63 | 84.45 | 82.24 | 85.53 | 84.83/93.45 | 85.71 |
KF-DeBERTa (Base) | 91.36 | 86.14 | 84.54 | 85.99 | 86.60/95.07 | 87.01 |
License
KF-DeBERTa์ ์์ค์ฝ๋ ๋ฐ ๋ชจ๋ธ์ MIT ๋ผ์ด์ ์ค ํ์ ๊ณต๊ฐ๋์ด ์์ต๋๋ค.
๋ผ์ด์ ์ค ์ ๋ฌธ์ MIT ํ์ผ์์ ํ์ธํ ์ ์์ต๋๋ค.
๋ชจ๋ธ์ ์ฌ์ฉ์ผ๋ก ์ธํด ๋ฐ์ํ ์ด๋ ํ ์ํด์ ๋ํด์๋ ๋น์ฌ๋ ์ฑ
์์ ์ง์ง ์์ต๋๋ค.
Citation
@proceedings{jeon-etal-2023-kfdeberta,
title = {KF-DeBERTa: Financial Domain-specific Pre-trained Language Model},
author = {Eunkwang Jeon, Jungdae Kim, Minsang Song, and Joohyun Ryu},
booktitle = {Proceedings of the 35th Annual Conference on Human and Cognitive Language Technology},
moth = {oct},
year = {2023},
publisher = {Korean Institute of Information Scientists and Engineers},
url = {http://www.hclt.kr/symp/?lnb=conference},
pages = {143--148},
}
- Downloads last month
- 3,161
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.