wine-quality / README.md
julien-c's picture
julien-c HF staff
Fix `widget` metadata
66d2918
|
raw
history blame
2.7 kB
metadata
tags:
  - tabular-classification
  - sklearn
datasets:
  - wine-quality
  - lvwerra/red-wine
widget:
  - structuredData:
      fixed_acidity:
        - 7.4
        - 7.8
        - 10.3
      volatile_acidity:
        - 0.7
        - 0.88
        - 0.32
      citric_acid:
        - 0
        - 0
        - 0.45
      residual_sugar:
        - 1.9
        - 2.6
        - 6.4
      chlorides:
        - 0.076
        - 0.098
        - 0.073
      free_sulfur_dioxide:
        - 11
        - 25
        - 5
      total_sulfur_dioxide:
        - 34
        - 67
        - 13
      density:
        - 0.9978
        - 0.9968
        - 0.9976
      pH:
        - 3.51
        - 3.2
        - 3.23
      sulphates:
        - 0.56
        - 0.68
        - 0.82
      alcohol:
        - 9.4
        - 9.8
        - 12.6

Wine Quality classification

A Simple Example of Scikit-learn Pipeline

Inspired by https://towardsdatascience.com/a-simple-example-of-pipeline-in-machine-learning-with-scikit-learn-e726ffbb6976 by Saptashwa Bhattacharyya

How to use

from huggingface_hub import hf_hub_url, cached_download
import joblib
import pandas as pd

REPO_ID = "julien-c/wine-quality"
FILENAME = "sklearn_model.joblib"


model = joblib.load(cached_download(
    hf_hub_url(REPO_ID, FILENAME)
))

# model is a `sklearn.pipeline.Pipeline`

Get sample data from this repo

data_file = cached_download(
    hf_hub_url(REPO_ID, "winequality-red.csv")
)
winedf = pd.read_csv(data_file, sep=";")


X = winedf.drop(["quality"], axis=1)
Y = winedf["quality"]

print(X[:3])
fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol
0 7.4 0.7 0 1.9 0.076 11 34 0.9978 3.51 0.56 9.4
1 7.8 0.88 0 2.6 0.098 25 67 0.9968 3.2 0.68 9.8
2 7.8 0.76 0.04 2.3 0.092 15 54 0.997 3.26 0.65 9.8

Get your prediction

labels = model.predict(X[:3])
# [5, 5, 5]

Eval

model.score(X, Y)
# 0.6616635397123202

🍷 Disclaimer

No red wine was drunk (unfortunately) while training this model 🍷