Edit model card

How to use

from transformers import MT5Tokenizer, MT5ForConditionalGeneration

tokenizer = MT5Tokenizer.from_pretrained('juierror/thai-news-summarization')
model = MT5ForConditionalGeneration.from_pretrained('juierror/thai-news-summarization')

text = "some news with head line"

tokenized_text = tokenizer(text, truncation=True, padding=True, return_tensors='pt')
    
source_ids = tokenized_text['input_ids'].to("cpu", dtype = torch.long)
source_mask = tokenized_text['attention_mask'].to("cpu", dtype = torch.long)
    
generated_ids = model.generate(
    input_ids = source_ids,
    attention_mask = source_mask, 
    max_length=512,
    num_beams=5,
    repetition_penalty=1, 
    length_penalty=1, 
    early_stopping=True,
    no_repeat_ngram_size=2
)

pred = tokenizer.decode(generated_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
Downloads last month
20
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train juierror/thai-news-summarization