Edit model card

BioNLP13CG_PubMedBERT_NER

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2066

  • Seqeval classification report: precision recall f1-score support

                   Amino_acid       0.78      0.81      0.79       301
            Anatomical_system       0.00      0.00      0.00         3
                       Cancer       0.00      0.00      0.00        37
                         Cell       0.79      0.85      0.82       446
           Cellular_component       0.00      0.00      0.00        19
    

Developing_anatomical_structure 0.55 0.78 0.65 399 Gene_or_gene_product 0.68 0.41 0.51 128 Immaterial_anatomical_entity 0.00 0.00 0.00 45 Multi-tissue_structure 0.25 0.02 0.04 98 Organ 0.00 0.00 0.00 19 Organism 0.90 0.93 0.92 1108 Organism_subdivision 0.71 0.12 0.21 120 Organism_substance 0.62 0.59 0.60 128 Pathological_formation 0.00 0.00 0.00 41 Simple_chemical 0.87 0.86 0.86 4397 Tissue 0.90 0.93 0.91 1790

                  micro avg       0.84      0.83      0.84      9079
                  macro avg       0.44      0.39      0.39      9079
               weighted avg       0.83      0.83      0.82      9079

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Seqeval classification report
No log 0.99 95 0.3390 precision recall f1-score support
                 Amino_acid       0.81      0.10      0.18       301
          Anatomical_system       0.00      0.00      0.00         3
                     Cancer       0.00      0.00      0.00        37
                       Cell       0.82      0.76      0.79       446
         Cellular_component       0.00      0.00      0.00        19

Developing_anatomical_structure 0.90 0.07 0.13 399 Gene_or_gene_product 0.00 0.00 0.00 128 Immaterial_anatomical_entity 0.00 0.00 0.00 45 Multi-tissue_structure 0.00 0.00 0.00 98 Organ 0.00 0.00 0.00 19 Organism 0.64 0.86 0.73 1108 Organism_subdivision 0.00 0.00 0.00 120 Organism_substance 0.00 0.00 0.00 128 Pathological_formation 0.00 0.00 0.00 41 Simple_chemical 0.83 0.79 0.81 4397 Tissue 0.74 0.91 0.82 1790

                  micro avg       0.77      0.71      0.74      9079
                  macro avg       0.30      0.22      0.22      9079
               weighted avg       0.73      0.71      0.69      9079

| | No log | 2.0 | 191 | 0.2209 | precision recall f1-score support

                 Amino_acid       0.76      0.75      0.76       301
          Anatomical_system       0.00      0.00      0.00         3
                     Cancer       0.00      0.00      0.00        37
                       Cell       0.78      0.87      0.82       446
         Cellular_component       0.00      0.00      0.00        19

Developing_anatomical_structure 0.52 0.75 0.61 399 Gene_or_gene_product 0.65 0.24 0.35 128 Immaterial_anatomical_entity 0.00 0.00 0.00 45 Multi-tissue_structure 0.00 0.00 0.00 98 Organ 0.00 0.00 0.00 19 Organism 0.89 0.92 0.91 1108 Organism_subdivision 0.50 0.05 0.09 120 Organism_substance 0.61 0.52 0.56 128 Pathological_formation 0.00 0.00 0.00 41 Simple_chemical 0.86 0.86 0.86 4397 Tissue 0.87 0.93 0.90 1790

                  micro avg       0.83      0.82      0.83      9079
                  macro avg       0.40      0.37      0.37      9079
               weighted avg       0.81      0.82      0.81      9079

| | No log | 2.98 | 285 | 0.2066 | precision recall f1-score support

                 Amino_acid       0.78      0.81      0.79       301
          Anatomical_system       0.00      0.00      0.00         3
                     Cancer       0.00      0.00      0.00        37
                       Cell       0.79      0.85      0.82       446
         Cellular_component       0.00      0.00      0.00        19

Developing_anatomical_structure 0.55 0.78 0.65 399 Gene_or_gene_product 0.68 0.41 0.51 128 Immaterial_anatomical_entity 0.00 0.00 0.00 45 Multi-tissue_structure 0.25 0.02 0.04 98 Organ 0.00 0.00 0.00 19 Organism 0.90 0.93 0.92 1108 Organism_subdivision 0.71 0.12 0.21 120 Organism_substance 0.62 0.59 0.60 128 Pathological_formation 0.00 0.00 0.00 41 Simple_chemical 0.87 0.86 0.86 4397 Tissue 0.90 0.93 0.91 1790

                  micro avg       0.84      0.83      0.84      9079
                  macro avg       0.44      0.39      0.39      9079
               weighted avg       0.83      0.83      0.82      9079

|

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
12
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for judithrosell/BioNLP13CG_PubMedBERT_NER