Edit model card

resnet50_rvl-cdip

This model is a fine-tuned version of microsoft/resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8368
  • Accuracy: 0.7503
  • Brier Loss: 0.3458
  • Nll: 3.2289
  • F1 Micro: 0.7503
  • F1 Macro: 0.5224
  • Ece: 0.0166
  • Aurc: 0.0739

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 312 3.9686 0.1994 0.9069 6.9377 0.1994 0.0036 0.0434 0.6332
5.3078 2.0 625 1.5040 0.5644 0.5696 4.9767 0.5644 0.0480 0.0330 0.2052
5.3078 3.0 937 1.1500 0.6602 0.4588 4.0574 0.6602 0.1527 0.0193 0.1309
1.3983 4.0 1250 1.0174 0.6961 0.4132 3.6856 0.6961 0.2658 0.0184 0.1053
1.0466 5.0 1562 0.9439 0.7167 0.3862 3.5182 0.7167 0.3477 0.0150 0.0921
1.0466 6.0 1875 0.9042 0.7302 0.3717 3.3972 0.7302 0.3345 0.0160 0.0854
0.9333 7.0 2187 0.8713 0.7395 0.3593 3.3567 0.7395 0.4236 0.0162 0.0801
0.8757 8.0 2500 0.8550 0.7444 0.3531 3.2398 0.7444 0.4113 0.0150 0.0772
0.8757 9.0 2812 0.8389 0.7487 0.3468 3.1800 0.7487 0.4613 0.0149 0.0745
0.8509 9.98 3120 0.8368 0.7503 0.3458 3.2289 0.7503 0.5224 0.0166 0.0739

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.2.0.dev20231112+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
2
Safetensors
Model size
25.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jordyvl/resnet50_rvl-cdip

Finetuned
(127)
this model
Finetunes
2 models