jordyvl's picture
Saving best model of baseline_BERT_50K_steps to hub
fccefe5 verified
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - arxiv_dataset
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: baseline_BERT_50K_steps
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: arxiv_dataset
          type: arxiv_dataset
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9936787420400056
          - name: Precision
            type: precision
            value: 0.7967781908302355
          - name: Recall
            type: recall
            value: 0.4734468476760239
          - name: F1
            type: f1
            value: 0.5939610876970152

baseline_BERT_50K_steps

This model is a fine-tuned version of bert-base-uncased on the arxiv_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0192
  • Accuracy: 0.9937
  • Precision: 0.7968
  • Recall: 0.4734
  • F1: 0.5940
  • Hamming: 0.0063

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 50000

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Hamming
0.0343 0.03 10000 0.0315 0.9912 0.7679 0.1370 0.2326 0.0088
0.0244 0.06 20000 0.0234 0.9925 0.7813 0.3262 0.4602 0.0075
0.0219 0.09 30000 0.0210 0.9931 0.7572 0.4320 0.5502 0.0069
0.0204 0.12 40000 0.0197 0.9935 0.7738 0.4711 0.5857 0.0065
0.0197 0.15 50000 0.0192 0.9937 0.7968 0.4734 0.5940 0.0063

Framework versions

  • Transformers 4.37.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.16.1
  • Tokenizers 0.15.1