Fine-tuned XLSR-53 large model for speech recognition in Russian
Fine-tuned facebook/wav2vec2-large-xlsr-53 on Russian using the train and validation splits of Common Voice 6.1 and CSS10. When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned thanks to the GPU credits generously given by the OVHcloud :)
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
Usage
The model can be used directly (without a language model) as follows...
Using the HuggingSound library:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-russian")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
Writing your own inference script:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "ru"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-russian"
SAMPLES = 5
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
Reference | Prediction |
---|---|
ОН РАБОТАТЬ, А ЕЕ НЕ УДЕРЖАТЬ НИКАК — БЕГАЕТ ЗА КЛЁШЕМ КАЖДОГО БУЛЬВАРНИКА. | ОН РАБОТАТЬ А ЕЕ НЕ УДЕРЖАТ НИКАК БЕГАЕТ ЗА КЛЕШОМ КАЖДОГО БУЛЬБАРНИКА |
ЕСЛИ НЕ БУДЕТ ВОЗРАЖЕНИЙ, Я БУДУ СЧИТАТЬ, ЧТО АССАМБЛЕЯ СОГЛАСНА С ЭТИМ ПРЕДЛОЖЕНИЕМ. | ЕСЛИ НЕ БУДЕТ ВОЗРАЖЕНИЙ Я БУДУ СЧИТАТЬ ЧТО АССАМБЛЕЯ СОГЛАСНА С ЭТИМ ПРЕДЛОЖЕНИЕМ |
ПАЛЕСТИНЦАМ НЕОБХОДИМО СНАЧАЛА УСТАНОВИТЬ МИР С ИЗРАИЛЕМ, А ЗАТЕМ ДОБИВАТЬСЯ ПРИЗНАНИЯ ГОСУДАРСТВЕННОСТИ. | ПАЛЕСТИНЦАМ НЕОБХОДИМО СНАЧАЛА УСТАНОВИТЬ С НИ МИР ФЕЗРЕЛЕМ А ЗАТЕМ ДОБИВАТЬСЯ ПРИЗНАНИЯ ГОСУДАРСТВЕНСКИ |
У МЕНЯ БЫЛО ТАКОЕ ЧУВСТВО, ЧТО ЧТО-ТО ТАКОЕ ОЧЕНЬ ВАЖНОЕ Я ПРИБАВЛЯЮ. | У МЕНЯ БЫЛО ТАКОЕ ЧУВСТВО ЧТО ЧТО-ТО ТАКОЕ ОЧЕНЬ ВАЖНОЕ Я ПРЕДБАВЛЯЕТ |
ТОЛЬКО ВРЯД ЛИ ПОЙМЕТ. | ТОЛЬКО ВРЯД ЛИ ПОЙМЕТ |
ВРОНСКИЙ, СЛУШАЯ ОДНИМ УХОМ, ПЕРЕВОДИЛ БИНОКЛЬ С БЕНУАРА НА БЕЛЬ-ЭТАЖ И ОГЛЯДЫВАЛ ЛОЖИ. | ЗЛАЗКИ СЛУШАЮ ОТ ОДНИМ УХАМ ТЫ ВОТИ В ВИНОКОТ СПИЛА НА ПЕРЕТАЧ И ОКЛЯДЫВАЛ БОСУ |
К СОЖАЛЕНИЮ, СИТУАЦИЯ ПРОДОЛЖАЕТ УХУДШАТЬСЯ. | К СОЖАЛЕНИЮ СИТУАЦИИ ПРОДОЛЖАЕТ УХУЖАТЬСЯ |
ВСЁ ЖАЛОВАНИЕ УХОДИЛО НА ДОМАШНИЕ РАСХОДЫ И НА УПЛАТУ МЕЛКИХ НЕПЕРЕВОДИВШИХСЯ ДОЛГОВ. | ВСЕ ЖАЛОВАНИЕ УХОДИЛО НА ДОМАШНИЕ РАСХОДЫ И НА УПЛАТУ МЕЛКИХ НЕ ПЕРЕВОДИВШИХСЯ ДОЛГОВ |
ТЕПЕРЬ ДЕЛО, КОНЕЧНО, ЗА ТЕМ, ЧТОБЫ ПРЕВРАТИТЬ СЛОВА В ДЕЛА. | ТЕПЕРЬ ДЕЛАЮ КОНЕЧНО ЗАТЕМ ЧТОБЫ ПРЕВРАТИТЬ СЛОВА В ДЕЛА |
ДЕВЯТЬ | ЛЕВЕТЬ |
Evaluation
- To evaluate on
mozilla-foundation/common_voice_6_0
with splittest
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-russian --dataset mozilla-foundation/common_voice_6_0 --config ru --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-russian --dataset speech-recognition-community-v2/dev_data --config ru --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Citation
If you want to cite this model you can use this:
@misc{grosman2021xlsr53-large-russian,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {R}ussian},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-russian}},
year={2021}
}
- Downloads last month
- 3,732,667
Model tree for jonatasgrosman/wav2vec2-large-xlsr-53-russian
Datasets used to train jonatasgrosman/wav2vec2-large-xlsr-53-russian
Spaces using jonatasgrosman/wav2vec2-large-xlsr-53-russian 18
Evaluation results
- Test WER on Common Voice ruself-reported13.300
- Test CER on Common Voice ruself-reported2.880
- Test WER (+LM) on Common Voice ruself-reported9.570
- Test CER (+LM) on Common Voice ruself-reported2.240
- Dev WER on Robust Speech Event - Dev Dataself-reported40.220
- Dev CER on Robust Speech Event - Dev Dataself-reported14.800
- Dev WER (+LM) on Robust Speech Event - Dev Dataself-reported33.610
- Dev CER (+LM) on Robust Speech Event - Dev Dataself-reported13.500