|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- uonlp/CulturaX |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: gpt2+ts_cx-en_00000-00009_50k |
|
results: |
|
- task: |
|
name: Causal Language Modeling |
|
type: text-generation |
|
dataset: |
|
name: uonlp/CulturaX en |
|
type: uonlp/CulturaX |
|
args: en |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.3894698710798747 |
|
license: mit |
|
language: |
|
- en |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gpt2+ts_cx-en_00000-00009_50k |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the uonlp/CulturaX en dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.4121 |
|
- Accuracy: 0.3895 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:------:|:---------------:|:--------:| |
|
| 4.375 | 0.04 | 10000 | 4.2815 | 0.3111 | |
|
| 4.0754 | 0.08 | 20000 | 3.9984 | 0.3341 | |
|
| 3.9409 | 0.11 | 30000 | 3.8615 | 0.3457 | |
|
| 3.8554 | 0.15 | 40000 | 3.7798 | 0.3531 | |
|
| 3.7973 | 0.19 | 50000 | 3.7210 | 0.3584 | |
|
| 3.7421 | 0.23 | 60000 | 3.6750 | 0.3630 | |
|
| 3.7097 | 0.27 | 70000 | 3.6378 | 0.3664 | |
|
| 3.6741 | 0.3 | 80000 | 3.6061 | 0.3694 | |
|
| 3.6599 | 0.34 | 90000 | 3.5803 | 0.3718 | |
|
| 3.6356 | 0.38 | 100000 | 3.5584 | 0.3741 | |
|
| 3.6131 | 0.42 | 110000 | 3.5423 | 0.3758 | |
|
| 3.5991 | 0.46 | 120000 | 3.5254 | 0.3776 | |
|
| 3.591 | 0.49 | 130000 | 3.5108 | 0.3790 | |
|
| 3.574 | 0.53 | 140000 | 3.4966 | 0.3805 | |
|
| 3.5606 | 0.57 | 150000 | 3.4866 | 0.3815 | |
|
| 3.5516 | 0.61 | 160000 | 3.4739 | 0.3828 | |
|
| 3.5423 | 0.64 | 170000 | 3.4650 | 0.3838 | |
|
| 3.5298 | 0.68 | 180000 | 3.4560 | 0.3847 | |
|
| 3.5287 | 0.72 | 190000 | 3.4479 | 0.3857 | |
|
| 3.5187 | 0.76 | 200000 | 3.4408 | 0.3863 | |
|
| 3.5157 | 0.8 | 210000 | 3.4339 | 0.3870 | |
|
| 3.5042 | 0.83 | 220000 | 3.4286 | 0.3876 | |
|
| 3.5033 | 0.87 | 230000 | 3.4229 | 0.3883 | |
|
| 3.501 | 0.91 | 240000 | 3.4188 | 0.3888 | |
|
| 3.4946 | 0.95 | 250000 | 3.4149 | 0.3892 | |
|
| 3.4971 | 0.99 | 260000 | 3.4126 | 0.3894 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.1 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |