CodeGemma-2B-Slerp-dora
CodeGemma-2B-Slerp-dora is a DPO fine-tuned of johnsnowlabs/CodeGemma-2B-Slerp on argilla/distilabel-intel-orca-dpo-pairs preference dataset using DoRA. The model has been trained for 1080 steps. All hyperparams are given below.
π Evaluation results
Coming Soom
Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "johnsnowlabs/CodeGemma-2B-dora"
messages = [{"role": "user", "content": "Explain what is Machine learning."}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-04
- train_batch_size: 1
- gradient_accumulation_steps: 8
- optimizer: PagedAdamW with 32-bit precision
- lr_scheduler_type: Cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 1080
LoRA Config
- lora_r: 16
- lora_alpha: 32
- lora_dropout: 0.05
- peft_use_dora: true
Framework versions
- Transformers 4.39.0.dev0
- Peft 0.9.1.dev0
- Datasets 2.18.0
- torch 2.2.0
- accelerate 0.27.2
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for johnsnowlabs/CodeGemma-2B-dora
Base model
johnsnowlabs/CodeGemma-2B-Slerp