See axolotl config
axolotl version: 0.4.0
base_model: mayflowergmbh/occiglot-10b-de-en-instruct
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
rl: dpo
datasets:
- path: johannhartmann/mistralorpo
split: train
type: chatml.intel
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./occiglot10b/
save_total_limit: 3
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: false
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_modules_to_save:
- embed_tokens
- lm_head
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: occiglot
wandb_entity: mayflowerteam
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
adam_beta2: 0.95
adam_epsilion: 0.00001
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
eval_steps:
eval_table_size:
eval_table_max_new_tokens: 128
save_steps: 239
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
save_safetensors: true
special_tokens:
eos_token: "<|im_end|>"
tokens: # these are delimiters
- "<|im_start|>"
chat_template: chatml
occiglot10b/
This model is a fine-tuned version of mayflowergmbh/occiglot-10b-de-en-instruct on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 2698
Training results
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for johannhartmann/occiglot10b
Base model
mayflowergmbh/occiglot-7b-de-en-instruct-hf