Update README.md
Browse files
README.md
CHANGED
@@ -3175,7 +3175,7 @@ def mean_pooling(model_output, attention_mask):
|
|
3175 |
sentences = ['How is the weather today?', 'What is the current weather like today?']
|
3176 |
|
3177 |
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-de')
|
3178 |
-
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True)
|
3179 |
|
3180 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
3181 |
|
@@ -3193,11 +3193,12 @@ You can use Jina Embedding models directly from transformers package.
|
|
3193 |
|
3194 |
```python
|
3195 |
!pip install transformers
|
|
|
3196 |
from transformers import AutoModel
|
3197 |
from numpy.linalg import norm
|
3198 |
|
3199 |
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
3200 |
-
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True)
|
3201 |
embeddings = model.encode(['How is the weather today?', 'Wie ist das Wetter heute?'])
|
3202 |
print(cos_sim(embeddings[0], embeddings[1]))
|
3203 |
```
|
|
|
3175 |
sentences = ['How is the weather today?', 'What is the current weather like today?']
|
3176 |
|
3177 |
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-de')
|
3178 |
+
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
3179 |
|
3180 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
3181 |
|
|
|
3193 |
|
3194 |
```python
|
3195 |
!pip install transformers
|
3196 |
+
import torch
|
3197 |
from transformers import AutoModel
|
3198 |
from numpy.linalg import norm
|
3199 |
|
3200 |
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
|
3201 |
+
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
3202 |
embeddings = model.encode(['How is the weather today?', 'Wie ist das Wetter heute?'])
|
3203 |
print(cos_sim(embeddings[0], embeddings[1]))
|
3204 |
```
|