The text embedding set trained by Jina AI.
Quick Start
The easiest way to starting using jina-embeddings-v2-base-de
is to use Jina AI's Embedding API.
Intended Usage & Model Info
jina-embeddings-v2-base-de
is a German/English bilingual text embedding model supporting 8192 sequence length.
It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of ALiBi to allow longer sequence length.
We have designed it for high performance in mono-lingual & cross-lingual applications and trained it specifically to support mixed German-English input without bias.
Additionally, we provide the following embedding models:
jina-embeddings-v2-base-de
ist ein zweisprachiges Text Embedding Modell für Deutsch und Englisch,
welches Texteingaben mit einer Länge von bis zu 8192 Token unterstützt.
Es basiert auf der adaptierten Bert-Modell-Architektur JinaBERT,
welche mithilfe einer symmetrische Variante von ALiBi längere Eingabetexte erlaubt.
Wir haben, das Model für hohe Performance in einsprachigen und cross-lingual Anwendungen entwickelt und speziell darauf trainiert,
gemischte deutsch-englische Eingaben ohne einen Bias zu kodieren.
Des Weiteren stellen wir folgende Embedding-Modelle bereit:
jina-embeddings-v2-small-en
: 33 million parameters.jina-embeddings-v2-base-en
: 137 million parameters.jina-embeddings-v2-base-zh
: 161 million parameters Chinese-English Bilingual embeddings.jina-embeddings-v2-base-de
: 161 million parameters German-English Bilingual embeddings (you are here).jina-embeddings-v2-base-es
: Spanish-English Bilingual embeddings (soon).jina-embeddings-v2-base-code
: 161 million parameters code embeddings.
Data & Parameters
The data and training details are described in this technical report.
Usage
Please apply mean pooling when integrating the model.
Why mean pooling?
mean poooling
takes all token embeddings from model output and averaging them at sentence/paragraph level.
It has been proved to be the most effective way to produce high-quality sentence embeddings.
We offer an encode
function to deal with this.
However, if you would like to do it without using the default encode
function:
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['How is the weather today?', 'What is the current weather like today?']
tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-base-de')
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16)
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
You can use Jina Embedding models directly from transformers package.
!pip install transformers
import torch
from transformers import AutoModel
from numpy.linalg import norm
cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16)
embeddings = model.encode(['How is the weather today?', 'Wie ist das Wetter heute?'])
print(cos_sim(embeddings[0], embeddings[1]))
If you only want to handle shorter sequence, such as 2k, pass the max_length
parameter to the encode
function:
embeddings = model.encode(
['Very long ... document'],
max_length=2048
)
Using the its latest release (v2.3.0) sentence-transformers also supports Jina embeddings (Please make sure that you are logged into huggingface as well):
!pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer(
"jinaai/jina-embeddings-v2-base-de", # switch to en/zh for English or Chinese
trust_remote_code=True
)
# control your input sequence length up to 8192
model.max_seq_length = 1024
embeddings = model.encode([
'How is the weather today?',
'Wie ist das Wetter heute?'
])
print(cos_sim(embeddings[0], embeddings[1]))
Alternatives to Using Transformers Package
- Managed SaaS: Get started with a free key on Jina AI's Embedding API.
- Private and high-performance deployment: Get started by picking from our suite of models and deploy them on AWS Sagemaker.
Benchmark Results
We evaluated our Bilingual model on all German and English evaluation tasks availble on the MTEB benchmark. In addition, we evaluated the models agains a couple of other German, English, and multilingual models on additional German evaluation tasks:
Use Jina Embeddings for RAG
According to the latest blog post from LLamaIndex,
In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out.
Contact
Join our Discord community and chat with other community members about ideas.
Citation
If you find Jina Embeddings useful in your research, please cite the following paper:
@article{mohr2024multi,
title={Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings},
author={Mohr, Isabelle and Krimmel, Markus and Sturua, Saba and Akram, Mohammad Kalim and Koukounas, Andreas and G{\"u}nther, Michael and Mastrapas, Georgios and Ravishankar, Vinit and Mart{\'\i}nez, Joan Fontanals and Wang, Feng and others},
journal={arXiv preprint arXiv:2402.17016},
year={2024}
}
- Downloads last month
- 24,396
Model tree for jinaai/jina-embeddings-v2-base-de
Spaces using jinaai/jina-embeddings-v2-base-de 7
Collection including jinaai/jina-embeddings-v2-base-de
Evaluation results
- accuracy on MTEB AmazonCounterfactualClassification (en)test set self-reported73.761
- ap on MTEB AmazonCounterfactualClassification (en)test set self-reported35.996
- f1 on MTEB AmazonCounterfactualClassification (en)test set self-reported67.504
- accuracy on MTEB AmazonCounterfactualClassification (de)test set self-reported68.919
- ap on MTEB AmazonCounterfactualClassification (de)test set self-reported79.733
- f1 on MTEB AmazonCounterfactualClassification (de)test set self-reported66.662
- accuracy on MTEB AmazonPolarityClassificationtest set self-reported77.522
- ap on MTEB AmazonPolarityClassificationtest set self-reported71.851
- f1 on MTEB AmazonPolarityClassificationtest set self-reported77.417
- accuracy on MTEB AmazonReviewsClassification (en)test set self-reported38.498