|
--- |
|
license: mit |
|
language: |
|
- acf |
|
- aoa |
|
- bah |
|
- bzj |
|
- bzk |
|
- cab |
|
- cri |
|
- crs |
|
- dcr |
|
- djk |
|
- fab |
|
- fng |
|
- fpe |
|
- gcf |
|
- gcr |
|
- gpe |
|
- gul |
|
- gyn |
|
- hat |
|
- icr |
|
- jam |
|
- kea |
|
- kri |
|
- ktu |
|
- lou |
|
- mfe |
|
- mue |
|
- pap |
|
- pcm |
|
- pov |
|
- pre |
|
- rcf |
|
- sag |
|
- srm |
|
- srn |
|
- svc |
|
- tpi |
|
- trf |
|
- wes |
|
- ara |
|
- aze |
|
- ceb |
|
- deu |
|
- eng |
|
- fra |
|
- nep |
|
- por |
|
- spa |
|
- zho |
|
task_categories: |
|
- translation |
|
--- |
|
|
|
# Kreyòl-MT |
|
|
|
Welcome to the repository for our **from-scratch** **public-data** model. |
|
|
|
Please see our paper: 📄 ["Kreyòl-MT: Building Machine Translation for Latin American, Caribbean, and Colonial African Creole Languages"](https://arxiv.org/abs/2405.05376) |
|
|
|
And our GitHub repository: 💻 [Kreyòl-MT](https://github.com/JHU-CLSP/Kreyol-MT/tree/main) |
|
|
|
And cite our work: |
|
|
|
``` |
|
@article{robinson2024krey, |
|
title={Krey$\backslash$ol-MT: Building MT for Latin American, Caribbean and Colonial African Creole Languages}, |
|
author={Robinson, Nathaniel R and Dabre, Raj and Shurtz, Ammon and Dent, Rasul and Onesi, Onenamiyi and Monroc, Claire Bizon and Grobol, Lo{\"\i}c and Muhammad, Hasan and Garg, Ashi and Etori, Naome A and others}, |
|
journal={arXiv preprint arXiv:2405.05376}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
## Model hosted here |
|
|
|
This is a many-to-many model for translation into and out of Creole languages, trained from scratch on public data. |
|
|
|
``` |
|
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM |
|
from transformers import AlbertTokenizer, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/kreyol-mt-scratch-pubtrain", do_lower_case=False, use_fast=False, keep_accents=True) |
|
|
|
# The tokenizer we use is based on the AlbertTokenizer class which is essentially sentencepiece. We train this sentencepeice model from scratch. |
|
# Or use tokenizer = AlbertTokenizer.from_pretrained("jhu-clsp/kreyol-mt-scratch-pubtrain", do_lower_case=False, use_fast=False, keep_accents=True) |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("jhu-clsp/kreyol-mt-scratch-pubtrain") |
|
|
|
# Or use model = MBartForConditionalGeneration.from_pretrained("jhu-clsp/kreyol-mt-scratch-pubtrain") |
|
|
|
# Some initial mapping |
|
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") |
|
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") |
|
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") |
|
|
|
# First tokenize the input and outputs. The format below is how the model was trained so the input should be "Sentence </s> <2hwc>". Similarly, the output should be "<2eng> Sentence </s>". |
|
# Example: For Saint Lucian Patois to English translation, we need to use language indicator tags: <2acf> and <2eng> where acf represents Saint Lucian Patois and eng represents English. |
|
# The following language indicator tokens are usable: <2acf>, <2aoa>, <2ara>, <2aze>, <2bah>, <2brc>, <2bzj>, <2bzk>, <2cab>, <2ceb>, <2cri>, <2crs>, <2dcr>, <2deu>, <2djk>, <2eng>, <2fab>, <2fng>, <2fpe>, <2fra>, <2gcf>, <2gcr>, <2gpe>, <2gul>, <2gyn>, <2hat>, <2icr>, <2jam>, <2kea>, <2kri>, <2ktu>, <2lou>, <2mart1259>, <2mfe>, <2mue>, <2nep>, <2pap>, <2pcm>, <2por>, <2pov>, <2pre>, <2rcf>, <2sag>, <2spa>, <2srm>, <2srn>, <2svc>, <2tpi>, <2trf>, <2wes>, <2zho> |
|
# For what language each language code corresponds to please look here: https://github.com/JHU-CLSP/Kreyol-MT?tab=readme-ov-file#building-machine-translation-for-latin-american-caribbean-and-colonial-african-creole-languages |
|
|
|
inp = tokenizer('Mi tingk se yu de tel mi lai. </s> <2jam>', add_special_tokens=False, return_tensors="pt", padding=True).input_ids |
|
|
|
model.eval() # Set dropouts to zero |
|
|
|
model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=60, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2eng>")) |
|
|
|
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
|
|
print(decoded_output) |
|
|
|
``` |
|
|
|
![results](./ours-public.png) |