Edit model card

bert-base-cased-cv-studio_name-medium

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3310
  • F1 Micro: 0.6388
  • F1 Macro: 0.5001

Model description

Predicts a studio name based on a CV text

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Micro F1 Macro Precision Micro Recall Micro
1.4139 0.98 1000 1.3831 0.6039 0.6039 0.4188 0.6039 0.6039
1.1561 1.96 2000 1.2386 0.6554 0.6554 0.4743 0.6554 0.6554
0.9183 2.93 3000 1.2201 0.6576 0.6576 0.5011 0.6576 0.6576
0.677 3.91 4000 1.3478 0.6442 0.6442 0.5206 0.6442 0.6442
0.4857 4.89 5000 1.4765 0.6393 0.6393 0.5215 0.6393 0.6393
0.3318 5.87 6000 1.6924 0.6442 0.6442 0.5024 0.6442 0.6442
0.2273 6.84 7000 1.8645 0.6444 0.6444 0.5060 0.6444 0.6444
0.1396 7.82 8000 2.1143 0.6381 0.6381 0.5181 0.6381 0.6381
0.0841 8.8 9000 2.2699 0.6359 0.6359 0.5065 0.6359 0.6359
0.0598 9.78 10000 2.3310 0.6388 0.6388 0.5001 0.6388 0.6388

Framework versions

  • Transformers 4.19.0
  • Pytorch 1.8.2+cu111
  • Datasets 1.6.2
  • Tokenizers 0.12.1
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.