Edit model card

resnet-152-fv-finetuned-memess

This model is a fine-tuned version of microsoft/resnet-152 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6281
  • Accuracy: 0.7674
  • Precision: 0.7651
  • Recall: 0.7674
  • F1: 0.7647

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.5902 0.99 20 1.5519 0.4938 0.3491 0.4938 0.3529
1.4694 1.99 40 1.3730 0.4892 0.4095 0.4892 0.3222
1.3129 2.99 60 1.2052 0.5301 0.3504 0.5301 0.4005
1.1831 3.99 80 1.1142 0.5587 0.4077 0.5587 0.4444
1.0581 4.99 100 0.9930 0.6012 0.5680 0.6012 0.5108
0.9464 5.99 120 0.9263 0.6507 0.6200 0.6507 0.6029
0.8581 6.99 140 0.8400 0.6917 0.6645 0.6917 0.6638
0.7739 7.99 160 0.7829 0.7087 0.6918 0.7087 0.6845
0.6762 8.99 180 0.7512 0.7318 0.7206 0.7318 0.7189
0.6162 9.99 200 0.7409 0.7264 0.7244 0.7264 0.7241
0.5546 10.99 220 0.6936 0.7465 0.7429 0.7465 0.7395
0.4633 11.99 240 0.6779 0.7473 0.7393 0.7473 0.7412
0.4373 12.99 260 0.6736 0.7573 0.7492 0.7573 0.7523
0.4074 13.99 280 0.6534 0.7566 0.7516 0.7566 0.7528
0.39 14.99 300 0.6521 0.7651 0.7603 0.7651 0.7608
0.3766 15.99 320 0.6499 0.7682 0.7607 0.7682 0.7630
0.3507 16.99 340 0.6497 0.7697 0.7686 0.7697 0.7686
0.3589 17.99 360 0.6519 0.7535 0.7485 0.7535 0.7502
0.3261 18.99 380 0.6449 0.7589 0.7597 0.7589 0.7585
0.3234 19.99 400 0.6281 0.7674 0.7651 0.7674 0.7647

Framework versions

  • Transformers 4.24.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.6.1.dev0
  • Tokenizers 0.13.1
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results