Edit model card

SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jarredparrett/fine-tuned-address-model-v0")
# Run inference
sentences = [
    '612 Madison # 2',
    '612 Madison Apt 2',
    '421 Jersey # 1',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.6005
spearman_cosine 0.4541
pearson_manhattan 0.4982
spearman_manhattan 0.4519
pearson_euclidean 0.4973
spearman_euclidean 0.4517
pearson_dot 0.6005
spearman_dot 0.4518
pearson_max 0.6005
spearman_max 0.4541

Semantic Similarity

Metric Value
pearson_cosine 0.9429
spearman_cosine 0.6568
pearson_manhattan 0.9703
spearman_manhattan 0.6536
pearson_euclidean 0.9704
spearman_euclidean 0.6536
pearson_dot 0.9429
spearman_dot 0.6536
pearson_max 0.9704
spearman_max 0.6568

Training Details

Training Dataset

Unnamed Dataset

  • Size: 17,500 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string int
    details
    • min: 5 tokens
    • mean: 7.0 tokens
    • max: 12 tokens
    • min: 5 tokens
    • mean: 7.01 tokens
    • max: 12 tokens
    • 0: ~18.70%
    • 1: ~81.30%
  • Samples:
    sentence_0 sentence_1 label
    32 Cinder #17 32 Cinder Unit 17 1
    85 Allen Apt 2R 85 Allen #2R 1
    138 - 162 Martin Luther King Jr Apt 1807 138 - 162 Martin Luther King Jr Apt 1807 1
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss test_spearman_max validation_spearman_max
0 0 - 0.4541 -
0.0914 100 - - 0.6494
0.1828 200 - - 0.6567
0.2742 300 - - 0.6566
0.3656 400 - - 0.6568
0.4570 500 0.0056 - 0.6568
0.5484 600 - - 0.6568
0.6399 700 - - 0.6566
0.7313 800 - - 0.6568
0.8227 900 - - 0.6568
0.9141 1000 0.0026 - 0.6570
1.0 1094 - - 0.6568
1.0055 1100 - - 0.6568
1.0969 1200 - - 0.6568
1.1883 1300 - - 0.6569
1.2797 1400 - - 0.6569
1.3711 1500 0.0021 - 0.6569
1.4625 1600 - - 0.6570
1.5539 1700 - - 0.6570
1.6453 1800 - - 0.6568
1.7367 1900 - - 0.6567
1.8282 2000 0.0018 - 0.6569
1.9196 2100 - - 0.6571
2.0 2188 - - 0.6571
2.0110 2200 - - 0.6570
2.1024 2300 - - 0.6568
2.1938 2400 - - 0.6569
2.2852 2500 0.0016 - 0.6570
2.3766 2600 - - 0.6569
2.4680 2700 - - 0.6570
2.5594 2800 - - 0.6568
2.6508 2900 - - 0.6569
2.7422 3000 0.0014 - 0.6568
2.8336 3100 - - 0.6569
2.9250 3200 - - 0.6569
3.0 3282 - - 0.6569
3.0165 3300 - - 0.6569
3.1079 3400 - - 0.6568
3.1993 3500 0.0014 - 0.6568
3.2907 3600 - - 0.6569
3.3821 3700 - - 0.6569
3.4735 3800 - - 0.6568
3.5649 3900 - - 0.6568
3.6563 4000 0.0013 - 0.6568
3.7477 4100 - - 0.6568
3.8391 4200 - - 0.6568
3.9305 4300 - - 0.6568
4.0 4376 - - 0.6568

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.0+cu121
  • Accelerate: 0.33.0
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, 
    title={Dimensionality Reduction by Learning an Invariant Mapping}, 
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
Downloads last month
123
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jarredparrett/fine-tuned-address-model-v0

Quantized
(19)
this model

Evaluation results