SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jarredparrett/fine-tuned-address-model-v0")
# Run inference
sentences = [
'612 Madison # 2',
'612 Madison Apt 2',
'421 Jersey # 1',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6005 |
spearman_cosine | 0.4541 |
pearson_manhattan | 0.4982 |
spearman_manhattan | 0.4519 |
pearson_euclidean | 0.4973 |
spearman_euclidean | 0.4517 |
pearson_dot | 0.6005 |
spearman_dot | 0.4518 |
pearson_max | 0.6005 |
spearman_max | 0.4541 |
Semantic Similarity
- Dataset:
validation
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9429 |
spearman_cosine | 0.6568 |
pearson_manhattan | 0.9703 |
spearman_manhattan | 0.6536 |
pearson_euclidean | 0.9704 |
spearman_euclidean | 0.6536 |
pearson_dot | 0.9429 |
spearman_dot | 0.6536 |
pearson_max | 0.9704 |
spearman_max | 0.6568 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 17,500 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 5 tokens
- mean: 7.0 tokens
- max: 12 tokens
- min: 5 tokens
- mean: 7.01 tokens
- max: 12 tokens
- 0: ~18.70%
- 1: ~81.30%
- Samples:
sentence_0 sentence_1 label 32 Cinder #17
32 Cinder Unit 17
1
85 Allen Apt 2R
85 Allen #2R
1
138 - 162 Martin Luther King Jr Apt 1807
138 - 162 Martin Luther King Jr Apt 1807
1
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | test_spearman_max | validation_spearman_max |
---|---|---|---|---|
0 | 0 | - | 0.4541 | - |
0.0914 | 100 | - | - | 0.6494 |
0.1828 | 200 | - | - | 0.6567 |
0.2742 | 300 | - | - | 0.6566 |
0.3656 | 400 | - | - | 0.6568 |
0.4570 | 500 | 0.0056 | - | 0.6568 |
0.5484 | 600 | - | - | 0.6568 |
0.6399 | 700 | - | - | 0.6566 |
0.7313 | 800 | - | - | 0.6568 |
0.8227 | 900 | - | - | 0.6568 |
0.9141 | 1000 | 0.0026 | - | 0.6570 |
1.0 | 1094 | - | - | 0.6568 |
1.0055 | 1100 | - | - | 0.6568 |
1.0969 | 1200 | - | - | 0.6568 |
1.1883 | 1300 | - | - | 0.6569 |
1.2797 | 1400 | - | - | 0.6569 |
1.3711 | 1500 | 0.0021 | - | 0.6569 |
1.4625 | 1600 | - | - | 0.6570 |
1.5539 | 1700 | - | - | 0.6570 |
1.6453 | 1800 | - | - | 0.6568 |
1.7367 | 1900 | - | - | 0.6567 |
1.8282 | 2000 | 0.0018 | - | 0.6569 |
1.9196 | 2100 | - | - | 0.6571 |
2.0 | 2188 | - | - | 0.6571 |
2.0110 | 2200 | - | - | 0.6570 |
2.1024 | 2300 | - | - | 0.6568 |
2.1938 | 2400 | - | - | 0.6569 |
2.2852 | 2500 | 0.0016 | - | 0.6570 |
2.3766 | 2600 | - | - | 0.6569 |
2.4680 | 2700 | - | - | 0.6570 |
2.5594 | 2800 | - | - | 0.6568 |
2.6508 | 2900 | - | - | 0.6569 |
2.7422 | 3000 | 0.0014 | - | 0.6568 |
2.8336 | 3100 | - | - | 0.6569 |
2.9250 | 3200 | - | - | 0.6569 |
3.0 | 3282 | - | - | 0.6569 |
3.0165 | 3300 | - | - | 0.6569 |
3.1079 | 3400 | - | - | 0.6568 |
3.1993 | 3500 | 0.0014 | - | 0.6568 |
3.2907 | 3600 | - | - | 0.6569 |
3.3821 | 3700 | - | - | 0.6569 |
3.4735 | 3800 | - | - | 0.6568 |
3.5649 | 3900 | - | - | 0.6568 |
3.6563 | 4000 | 0.0013 | - | 0.6568 |
3.7477 | 4100 | - | - | 0.6568 |
3.8391 | 4200 | - | - | 0.6568 |
3.9305 | 4300 | - | - | 0.6568 |
4.0 | 4376 | - | - | 0.6568 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 123
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jarredparrett/fine-tuned-address-model-v0
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Pearson Cosine on testself-reported0.600
- Spearman Cosine on testself-reported0.454
- Pearson Manhattan on testself-reported0.498
- Spearman Manhattan on testself-reported0.452
- Pearson Euclidean on testself-reported0.497
- Spearman Euclidean on testself-reported0.452
- Pearson Dot on testself-reported0.600
- Spearman Dot on testself-reported0.452
- Pearson Max on testself-reported0.600
- Spearman Max on testself-reported0.454