udever-bloom-560m / README.md
izhx's picture
Update README.md
8f07643
metadata
license: bigscience-bloom-rail-1.0
language:
  - ak
  - ar
  - as
  - bm
  - bn
  - ca
  - code
  - en
  - es
  - eu
  - fon
  - fr
  - gu
  - hi
  - id
  - ig
  - ki
  - kn
  - lg
  - ln
  - ml
  - mr
  - ne
  - nso
  - ny
  - or
  - pa
  - pt
  - rn
  - rw
  - sn
  - st
  - sw
  - ta
  - te
  - tn
  - ts
  - tum
  - tw
  - ur
  - vi
  - wo
  - xh
  - yo
  - zh
  - zhs
  - zht
  - zu
tags:
  - mteb
model-index:
  - name: udever-bloom-560m
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 25.170024237678657
          - type: cos_sim_spearman
            value: 25.32025098111752
          - type: euclidean_pearson
            value: 25.34284673812859
          - type: euclidean_spearman
            value: 25.52812937004611
          - type: manhattan_pearson
            value: 25.734179522960822
          - type: manhattan_spearman
            value: 25.92247507041032
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 32.3359541791282
          - type: cos_sim_spearman
            value: 33.45815274836323
          - type: euclidean_pearson
            value: 35.14748229440635
          - type: euclidean_spearman
            value: 33.377829932851334
          - type: manhattan_pearson
            value: 35.359130773295625
          - type: manhattan_spearman
            value: 33.524469762932426
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 72.35820895522389
          - type: ap
            value: 35.45566303125099
          - type: f1
            value: 66.49474786522534
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (de)
          config: de
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 66.423982869379
          - type: ap
            value: 78.32781372746805
          - type: f1
            value: 64.24959400774807
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en-ext)
          config: en-ext
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 73.65817091454274
          - type: ap
            value: 21.73416645163647
          - type: f1
            value: 60.52120070712094
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (ja)
          config: ja
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 56.86295503211991
          - type: ap
            value: 12.906256075113513
          - type: f1
            value: 46.68625513679152
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 83.8095
          - type: ap
            value: 78.5195717101614
          - type: f1
            value: 83.74169093676316
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 38.97
          - type: f1
            value: 38.57853211177342
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (de)
          config: de
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 26.846000000000004
          - type: f1
            value: 26.473886891677306
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (es)
          config: es
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 38.974
          - type: f1
            value: 38.31719230291287
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (fr)
          config: fr
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 38.38799999999999
          - type: f1
            value: 37.53319978613875
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (ja)
          config: ja
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 28.311999999999998
          - type: f1
            value: 27.988313617729755
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 35.704
          - type: f1
            value: 34.863182924437254
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.053
          - type: map_at_10
            value: 35.811
          - type: map_at_100
            value: 37.035000000000004
          - type: map_at_1000
            value: 37.055
          - type: map_at_3
            value: 30.666
          - type: map_at_5
            value: 33.525
          - type: mrr_at_1
            value: 21.266
          - type: mrr_at_10
            value: 35.906
          - type: mrr_at_100
            value: 37.122
          - type: mrr_at_1000
            value: 37.141999999999996
          - type: mrr_at_3
            value: 30.714000000000002
          - type: mrr_at_5
            value: 33.576
          - type: ndcg_at_1
            value: 21.053
          - type: ndcg_at_10
            value: 44.545
          - type: ndcg_at_100
            value: 49.844
          - type: ndcg_at_1000
            value: 50.298
          - type: ndcg_at_3
            value: 33.889
          - type: ndcg_at_5
            value: 39.059
          - type: precision_at_1
            value: 21.053
          - type: precision_at_10
            value: 7.269
          - type: precision_at_100
            value: 0.96
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 14.414
          - type: precision_at_5
            value: 11.166
          - type: recall_at_1
            value: 21.053
          - type: recall_at_10
            value: 72.688
          - type: recall_at_100
            value: 96.017
          - type: recall_at_1000
            value: 99.431
          - type: recall_at_3
            value: 43.242999999999995
          - type: recall_at_5
            value: 55.832
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 40.26646269393896
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 32.00218289816601
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 57.381567373603424
          - type: mrr
            value: 70.09431473420392
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 87.14803223261677
          - type: cos_sim_spearman
            value: 84.43626128689064
          - type: euclidean_pearson
            value: 85.03130036472703
          - type: euclidean_spearman
            value: 84.05974668365359
          - type: manhattan_pearson
            value: 85.59339889467545
          - type: manhattan_spearman
            value: 83.86938090025696
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 44.19468290937555
          - type: cos_sim_spearman
            value: 43.93025426799595
          - type: euclidean_pearson
            value: 45.273900549350735
          - type: euclidean_spearman
            value: 45.07419415738924
          - type: manhattan_pearson
            value: 45.469211385235376
          - type: manhattan_spearman
            value: 45.27440191151001
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (de-en)
          config: de-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 11.440501043841337
          - type: f1
            value: 11.295895880968951
          - type: precision
            value: 11.237446950317073
          - type: recall
            value: 11.440501043841337
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (fr-en)
          config: fr-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 96.53312788906008
          - type: f1
            value: 96.18093770636143
          - type: precision
            value: 96.00667693888035
          - type: recall
            value: 96.53312788906008
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (ru-en)
          config: ru-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 1.6972635954277795
          - type: f1
            value: 1.5885146938143124
          - type: precision
            value: 1.5581125970067466
          - type: recall
            value: 1.6972635954277795
      - task:
          type: BitextMining
        dataset:
          type: mteb/bucc-bitext-mining
          name: MTEB BUCC (zh-en)
          config: zh-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 96.31384939441811
          - type: f1
            value: 96.15587151132175
          - type: precision
            value: 96.07688256977357
          - type: recall
            value: 96.31384939441811
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 80.97402597402598
          - type: f1
            value: 80.88177660652944
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 33.266950159712465
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 28.65092446021672
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 35.21075820650184
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 35.121931960714484
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 63.41256934884578
          - type: mrr
            value: 68.6492857142857
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 63.663067375541104
          - type: mrr
            value: 68.92075396825396
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.997
          - type: map_at_10
            value: 35.477
          - type: map_at_100
            value: 36.722
          - type: map_at_1000
            value: 36.849
          - type: map_at_3
            value: 32.083
          - type: map_at_5
            value: 33.884
          - type: mrr_at_1
            value: 32.046
          - type: mrr_at_10
            value: 41.455999999999996
          - type: mrr_at_100
            value: 42.214
          - type: mrr_at_1000
            value: 42.268
          - type: mrr_at_3
            value: 38.722
          - type: mrr_at_5
            value: 40.266999999999996
          - type: ndcg_at_1
            value: 32.046
          - type: ndcg_at_10
            value: 41.705999999999996
          - type: ndcg_at_100
            value: 46.695
          - type: ndcg_at_1000
            value: 49.128
          - type: ndcg_at_3
            value: 36.6
          - type: ndcg_at_5
            value: 38.725
          - type: precision_at_1
            value: 32.046
          - type: precision_at_10
            value: 8.197000000000001
          - type: precision_at_100
            value: 1.323
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 18.073
          - type: precision_at_5
            value: 13.047
          - type: recall_at_1
            value: 24.997
          - type: recall_at_10
            value: 54.013
          - type: recall_at_100
            value: 75.29400000000001
          - type: recall_at_1000
            value: 91.611
          - type: recall_at_3
            value: 38.627
          - type: recall_at_5
            value: 45.019999999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 23.194
          - type: map_at_10
            value: 30.076000000000004
          - type: map_at_100
            value: 31
          - type: map_at_1000
            value: 31.125999999999998
          - type: map_at_3
            value: 28.137
          - type: map_at_5
            value: 29.206
          - type: mrr_at_1
            value: 28.535
          - type: mrr_at_10
            value: 34.833999999999996
          - type: mrr_at_100
            value: 35.504999999999995
          - type: mrr_at_1000
            value: 35.57
          - type: mrr_at_3
            value: 33.089
          - type: mrr_at_5
            value: 34.115
          - type: ndcg_at_1
            value: 28.535
          - type: ndcg_at_10
            value: 34.285
          - type: ndcg_at_100
            value: 38.286
          - type: ndcg_at_1000
            value: 41.007
          - type: ndcg_at_3
            value: 31.395
          - type: ndcg_at_5
            value: 32.687
          - type: precision_at_1
            value: 28.535
          - type: precision_at_10
            value: 6.166
          - type: precision_at_100
            value: 1.042
          - type: precision_at_1000
            value: 0.155
          - type: precision_at_3
            value: 14.862
          - type: precision_at_5
            value: 10.331
          - type: recall_at_1
            value: 23.194
          - type: recall_at_10
            value: 41.648
          - type: recall_at_100
            value: 58.999
          - type: recall_at_1000
            value: 77.46300000000001
          - type: recall_at_3
            value: 32.931
          - type: recall_at_5
            value: 36.736999999999995
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 31.899
          - type: map_at_10
            value: 42.657000000000004
          - type: map_at_100
            value: 43.717
          - type: map_at_1000
            value: 43.79
          - type: map_at_3
            value: 39.635
          - type: map_at_5
            value: 41.538000000000004
          - type: mrr_at_1
            value: 36.864999999999995
          - type: mrr_at_10
            value: 46.137
          - type: mrr_at_100
            value: 46.946
          - type: mrr_at_1000
            value: 46.986
          - type: mrr_at_3
            value: 43.469
          - type: mrr_at_5
            value: 45.262
          - type: ndcg_at_1
            value: 36.864999999999995
          - type: ndcg_at_10
            value: 48.164
          - type: ndcg_at_100
            value: 52.769999999999996
          - type: ndcg_at_1000
            value: 54.393
          - type: ndcg_at_3
            value: 42.887
          - type: ndcg_at_5
            value: 45.871
          - type: precision_at_1
            value: 36.864999999999995
          - type: precision_at_10
            value: 7.843
          - type: precision_at_100
            value: 1.102
          - type: precision_at_1000
            value: 0.13
          - type: precision_at_3
            value: 19.352
          - type: precision_at_5
            value: 13.618
          - type: recall_at_1
            value: 31.899
          - type: recall_at_10
            value: 61.131
          - type: recall_at_100
            value: 81.504
          - type: recall_at_1000
            value: 93.146
          - type: recall_at_3
            value: 46.971000000000004
          - type: recall_at_5
            value: 54.42399999999999
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.621000000000002
          - type: map_at_10
            value: 23.621
          - type: map_at_100
            value: 24.636
          - type: map_at_1000
            value: 24.739
          - type: map_at_3
            value: 21.623
          - type: map_at_5
            value: 22.511
          - type: mrr_at_1
            value: 19.096
          - type: mrr_at_10
            value: 25.288
          - type: mrr_at_100
            value: 26.238
          - type: mrr_at_1000
            value: 26.314
          - type: mrr_at_3
            value: 23.202
          - type: mrr_at_5
            value: 24.213
          - type: ndcg_at_1
            value: 19.096
          - type: ndcg_at_10
            value: 27.529999999999998
          - type: ndcg_at_100
            value: 32.763
          - type: ndcg_at_1000
            value: 35.538
          - type: ndcg_at_3
            value: 23.362
          - type: ndcg_at_5
            value: 24.961
          - type: precision_at_1
            value: 19.096
          - type: precision_at_10
            value: 4.417999999999999
          - type: precision_at_100
            value: 0.739
          - type: precision_at_1000
            value: 0.10300000000000001
          - type: precision_at_3
            value: 9.981
          - type: precision_at_5
            value: 6.959999999999999
          - type: recall_at_1
            value: 17.621000000000002
          - type: recall_at_10
            value: 38.079
          - type: recall_at_100
            value: 62.499
          - type: recall_at_1000
            value: 83.783
          - type: recall_at_3
            value: 26.687
          - type: recall_at_5
            value: 30.459000000000003
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 11.019
          - type: map_at_10
            value: 15.869
          - type: map_at_100
            value: 17.078
          - type: map_at_1000
            value: 17.205000000000002
          - type: map_at_3
            value: 13.794
          - type: map_at_5
            value: 14.814
          - type: mrr_at_1
            value: 13.930000000000001
          - type: mrr_at_10
            value: 19.172
          - type: mrr_at_100
            value: 20.325
          - type: mrr_at_1000
            value: 20.415
          - type: mrr_at_3
            value: 17.122999999999998
          - type: mrr_at_5
            value: 18.124000000000002
          - type: ndcg_at_1
            value: 13.930000000000001
          - type: ndcg_at_10
            value: 19.646
          - type: ndcg_at_100
            value: 25.684
          - type: ndcg_at_1000
            value: 29.14
          - type: ndcg_at_3
            value: 15.614
          - type: ndcg_at_5
            value: 17.247
          - type: precision_at_1
            value: 13.930000000000001
          - type: precision_at_10
            value: 3.868
          - type: precision_at_100
            value: 0.8
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 7.420999999999999
          - type: precision_at_5
            value: 5.672
          - type: recall_at_1
            value: 11.019
          - type: recall_at_10
            value: 28.116000000000003
          - type: recall_at_100
            value: 54.794
          - type: recall_at_1000
            value: 79.838
          - type: recall_at_3
            value: 17.124
          - type: recall_at_5
            value: 21.086
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.791
          - type: map_at_10
            value: 33.442
          - type: map_at_100
            value: 34.719
          - type: map_at_1000
            value: 34.849000000000004
          - type: map_at_3
            value: 30.885
          - type: map_at_5
            value: 32.245000000000005
          - type: mrr_at_1
            value: 30.606
          - type: mrr_at_10
            value: 38.922000000000004
          - type: mrr_at_100
            value: 39.822
          - type: mrr_at_1000
            value: 39.881
          - type: mrr_at_3
            value: 36.622
          - type: mrr_at_5
            value: 37.907000000000004
          - type: ndcg_at_1
            value: 30.606
          - type: ndcg_at_10
            value: 38.867000000000004
          - type: ndcg_at_100
            value: 44.364
          - type: ndcg_at_1000
            value: 47.073
          - type: ndcg_at_3
            value: 34.63
          - type: ndcg_at_5
            value: 36.479
          - type: precision_at_1
            value: 30.606
          - type: precision_at_10
            value: 7.0360000000000005
          - type: precision_at_100
            value: 1.174
          - type: precision_at_1000
            value: 0.16
          - type: precision_at_3
            value: 16.522000000000002
          - type: precision_at_5
            value: 11.588
          - type: recall_at_1
            value: 24.791
          - type: recall_at_10
            value: 49.736000000000004
          - type: recall_at_100
            value: 72.67099999999999
          - type: recall_at_1000
            value: 91.29599999999999
          - type: recall_at_3
            value: 37.345
          - type: recall_at_5
            value: 42.400999999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 20.669999999999998
          - type: map_at_10
            value: 28.605000000000004
          - type: map_at_100
            value: 29.769000000000002
          - type: map_at_1000
            value: 29.881999999999998
          - type: map_at_3
            value: 25.886
          - type: map_at_5
            value: 27.317999999999998
          - type: mrr_at_1
            value: 25.457
          - type: mrr_at_10
            value: 33.423
          - type: mrr_at_100
            value: 34.269
          - type: mrr_at_1000
            value: 34.336
          - type: mrr_at_3
            value: 30.974
          - type: mrr_at_5
            value: 32.23
          - type: ndcg_at_1
            value: 25.457
          - type: ndcg_at_10
            value: 33.785
          - type: ndcg_at_100
            value: 39.145
          - type: ndcg_at_1000
            value: 41.772
          - type: ndcg_at_3
            value: 29.014
          - type: ndcg_at_5
            value: 31.019999999999996
          - type: precision_at_1
            value: 25.457
          - type: precision_at_10
            value: 6.2330000000000005
          - type: precision_at_100
            value: 1.045
          - type: precision_at_1000
            value: 0.145
          - type: precision_at_3
            value: 13.813
          - type: precision_at_5
            value: 9.863
          - type: recall_at_1
            value: 20.669999999999998
          - type: recall_at_10
            value: 44.651
          - type: recall_at_100
            value: 68.037
          - type: recall_at_1000
            value: 86.282
          - type: recall_at_3
            value: 31.381999999999998
          - type: recall_at_5
            value: 36.778
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 19.796583333333338
          - type: map_at_10
            value: 26.900166666666664
          - type: map_at_100
            value: 27.956583333333334
          - type: map_at_1000
            value: 28.08083333333333
          - type: map_at_3
            value: 24.598416666666665
          - type: map_at_5
            value: 25.81791666666667
          - type: mrr_at_1
            value: 23.68591666666667
          - type: mrr_at_10
            value: 30.65558333333333
          - type: mrr_at_100
            value: 31.503583333333335
          - type: mrr_at_1000
            value: 31.576083333333333
          - type: mrr_at_3
            value: 28.50525
          - type: mrr_at_5
            value: 29.690666666666665
          - type: ndcg_at_1
            value: 23.68591666666667
          - type: ndcg_at_10
            value: 31.425000000000004
          - type: ndcg_at_100
            value: 36.34316666666666
          - type: ndcg_at_1000
            value: 39.164249999999996
          - type: ndcg_at_3
            value: 27.330083333333338
          - type: ndcg_at_5
            value: 29.14408333333333
          - type: precision_at_1
            value: 23.68591666666667
          - type: precision_at_10
            value: 5.5862500000000015
          - type: precision_at_100
            value: 0.9571666666666666
          - type: precision_at_1000
            value: 0.13866666666666666
          - type: precision_at_3
            value: 12.663499999999999
          - type: precision_at_5
            value: 9.035333333333332
          - type: recall_at_1
            value: 19.796583333333338
          - type: recall_at_10
            value: 41.289416666666675
          - type: recall_at_100
            value: 63.251250000000006
          - type: recall_at_1000
            value: 83.4515
          - type: recall_at_3
            value: 29.727916666666665
          - type: recall_at_5
            value: 34.45824999999999
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 16.121
          - type: map_at_10
            value: 22.104
          - type: map_at_100
            value: 23.003
          - type: map_at_1000
            value: 23.108
          - type: map_at_3
            value: 20.233
          - type: map_at_5
            value: 21.186
          - type: mrr_at_1
            value: 18.865000000000002
          - type: mrr_at_10
            value: 24.951
          - type: mrr_at_100
            value: 25.779000000000003
          - type: mrr_at_1000
            value: 25.863999999999997
          - type: mrr_at_3
            value: 23.083000000000002
          - type: mrr_at_5
            value: 24.049
          - type: ndcg_at_1
            value: 18.865000000000002
          - type: ndcg_at_10
            value: 26.031
          - type: ndcg_at_100
            value: 30.589
          - type: ndcg_at_1000
            value: 33.565
          - type: ndcg_at_3
            value: 22.369
          - type: ndcg_at_5
            value: 23.932000000000002
          - type: precision_at_1
            value: 18.865000000000002
          - type: precision_at_10
            value: 4.324999999999999
          - type: precision_at_100
            value: 0.722
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 10.072000000000001
          - type: precision_at_5
            value: 7.086
          - type: recall_at_1
            value: 16.121
          - type: recall_at_10
            value: 35.577
          - type: recall_at_100
            value: 56.298
          - type: recall_at_1000
            value: 79.089
          - type: recall_at_3
            value: 25.239
          - type: recall_at_5
            value: 29.242
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.968
          - type: map_at_10
            value: 15.639
          - type: map_at_100
            value: 16.459
          - type: map_at_1000
            value: 16.584
          - type: map_at_3
            value: 14.127
          - type: map_at_5
            value: 14.911
          - type: mrr_at_1
            value: 13.73
          - type: mrr_at_10
            value: 18.822
          - type: mrr_at_100
            value: 19.592000000000002
          - type: mrr_at_1000
            value: 19.683999999999997
          - type: mrr_at_3
            value: 17.223
          - type: mrr_at_5
            value: 18.082
          - type: ndcg_at_1
            value: 13.73
          - type: ndcg_at_10
            value: 18.881999999999998
          - type: ndcg_at_100
            value: 23.182
          - type: ndcg_at_1000
            value: 26.479000000000003
          - type: ndcg_at_3
            value: 16.067999999999998
          - type: ndcg_at_5
            value: 17.265
          - type: precision_at_1
            value: 13.73
          - type: precision_at_10
            value: 3.544
          - type: precision_at_100
            value: 0.679
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 7.674
          - type: precision_at_5
            value: 5.561
          - type: recall_at_1
            value: 10.968
          - type: recall_at_10
            value: 25.596000000000004
          - type: recall_at_100
            value: 45.411
          - type: recall_at_1000
            value: 69.555
          - type: recall_at_3
            value: 17.582
          - type: recall_at_5
            value: 20.785
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 20.886
          - type: map_at_10
            value: 27.029999999999998
          - type: map_at_100
            value: 27.968
          - type: map_at_1000
            value: 28.108
          - type: map_at_3
            value: 25.001
          - type: map_at_5
            value: 26.185000000000002
          - type: mrr_at_1
            value: 24.067
          - type: mrr_at_10
            value: 30.756
          - type: mrr_at_100
            value: 31.593
          - type: mrr_at_1000
            value: 31.685999999999996
          - type: mrr_at_3
            value: 28.793999999999997
          - type: mrr_at_5
            value: 29.997
          - type: ndcg_at_1
            value: 24.067
          - type: ndcg_at_10
            value: 31.095
          - type: ndcg_at_100
            value: 35.893
          - type: ndcg_at_1000
            value: 39.158
          - type: ndcg_at_3
            value: 27.321
          - type: ndcg_at_5
            value: 29.247
          - type: precision_at_1
            value: 24.067
          - type: precision_at_10
            value: 5.103
          - type: precision_at_100
            value: 0.8460000000000001
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 12.065
          - type: precision_at_5
            value: 8.601
          - type: recall_at_1
            value: 20.886
          - type: recall_at_10
            value: 39.797
          - type: recall_at_100
            value: 61.399
          - type: recall_at_1000
            value: 84.555
          - type: recall_at_3
            value: 29.721999999999998
          - type: recall_at_5
            value: 34.455999999999996
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 21.394
          - type: map_at_10
            value: 28.303
          - type: map_at_100
            value: 29.726000000000003
          - type: map_at_1000
            value: 29.955
          - type: map_at_3
            value: 25.705
          - type: map_at_5
            value: 26.989
          - type: mrr_at_1
            value: 25.691999999999997
          - type: mrr_at_10
            value: 32.495000000000005
          - type: mrr_at_100
            value: 33.461999999999996
          - type: mrr_at_1000
            value: 33.534000000000006
          - type: mrr_at_3
            value: 30.137999999999998
          - type: mrr_at_5
            value: 31.383
          - type: ndcg_at_1
            value: 25.691999999999997
          - type: ndcg_at_10
            value: 33.300000000000004
          - type: ndcg_at_100
            value: 39.062000000000005
          - type: ndcg_at_1000
            value: 42.176
          - type: ndcg_at_3
            value: 28.859
          - type: ndcg_at_5
            value: 30.805
          - type: precision_at_1
            value: 25.691999999999997
          - type: precision_at_10
            value: 6.383
          - type: precision_at_100
            value: 1.387
          - type: precision_at_1000
            value: 0.22899999999999998
          - type: precision_at_3
            value: 13.439
          - type: precision_at_5
            value: 9.959999999999999
          - type: recall_at_1
            value: 21.394
          - type: recall_at_10
            value: 42.853
          - type: recall_at_100
            value: 69.284
          - type: recall_at_1000
            value: 89.646
          - type: recall_at_3
            value: 29.786
          - type: recall_at_5
            value: 34.797
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 13.999
          - type: map_at_10
            value: 19.979
          - type: map_at_100
            value: 20.682000000000002
          - type: map_at_1000
            value: 20.775
          - type: map_at_3
            value: 18.072
          - type: map_at_5
            value: 19.028
          - type: mrr_at_1
            value: 15.342
          - type: mrr_at_10
            value: 21.611
          - type: mrr_at_100
            value: 22.298000000000002
          - type: mrr_at_1000
            value: 22.375
          - type: mrr_at_3
            value: 19.624
          - type: mrr_at_5
            value: 20.659
          - type: ndcg_at_1
            value: 15.342
          - type: ndcg_at_10
            value: 23.809
          - type: ndcg_at_100
            value: 27.685
          - type: ndcg_at_1000
            value: 30.542
          - type: ndcg_at_3
            value: 19.842000000000002
          - type: ndcg_at_5
            value: 21.490000000000002
          - type: precision_at_1
            value: 15.342
          - type: precision_at_10
            value: 3.9190000000000005
          - type: precision_at_100
            value: 0.627
          - type: precision_at_1000
            value: 0.093
          - type: precision_at_3
            value: 8.688
          - type: precision_at_5
            value: 6.1370000000000005
          - type: recall_at_1
            value: 13.999
          - type: recall_at_10
            value: 34.276
          - type: recall_at_100
            value: 52.825
          - type: recall_at_1000
            value: 75.154
          - type: recall_at_3
            value: 23.339
          - type: recall_at_5
            value: 27.314
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.27
          - type: map_at_10
            value: 14.161999999999999
          - type: map_at_100
            value: 15.775
          - type: map_at_1000
            value: 15.947
          - type: map_at_3
            value: 11.701
          - type: map_at_5
            value: 12.952
          - type: mrr_at_1
            value: 18.632
          - type: mrr_at_10
            value: 28.871000000000002
          - type: mrr_at_100
            value: 29.985
          - type: mrr_at_1000
            value: 30.037999999999997
          - type: mrr_at_3
            value: 25.451
          - type: mrr_at_5
            value: 27.366
          - type: ndcg_at_1
            value: 18.632
          - type: ndcg_at_10
            value: 21.017
          - type: ndcg_at_100
            value: 28.022999999999996
          - type: ndcg_at_1000
            value: 31.518
          - type: ndcg_at_3
            value: 16.611
          - type: ndcg_at_5
            value: 18.149
          - type: precision_at_1
            value: 18.632
          - type: precision_at_10
            value: 6.736000000000001
          - type: precision_at_100
            value: 1.414
          - type: precision_at_1000
            value: 0.20600000000000002
          - type: precision_at_3
            value: 12.313
          - type: precision_at_5
            value: 9.759
          - type: recall_at_1
            value: 8.27
          - type: recall_at_10
            value: 26.218999999999998
          - type: recall_at_100
            value: 50.77
          - type: recall_at_1000
            value: 70.8
          - type: recall_at_3
            value: 15.526000000000002
          - type: recall_at_5
            value: 19.724
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 10.598
          - type: map_at_10
            value: 15.869
          - type: map_at_100
            value: 17.081
          - type: map_at_1000
            value: 17.267
          - type: map_at_3
            value: 13.877
          - type: map_at_5
            value: 14.884
          - type: mrr_at_1
            value: 17.279
          - type: mrr_at_10
            value: 22.554
          - type: mrr_at_100
            value: 23.521
          - type: mrr_at_1000
            value: 23.619
          - type: mrr_at_3
            value: 20.647
          - type: mrr_at_5
            value: 21.625
          - type: ndcg_at_1
            value: 17.279
          - type: ndcg_at_10
            value: 20.029
          - type: ndcg_at_100
            value: 25.968000000000004
          - type: ndcg_at_1000
            value: 30.158
          - type: ndcg_at_3
            value: 16.947000000000003
          - type: ndcg_at_5
            value: 18.069
          - type: precision_at_1
            value: 17.279
          - type: precision_at_10
            value: 4.704
          - type: precision_at_100
            value: 0.9690000000000001
          - type: precision_at_1000
            value: 0.152
          - type: precision_at_3
            value: 9.777
          - type: precision_at_5
            value: 7.207
          - type: recall_at_1
            value: 10.598
          - type: recall_at_10
            value: 26.034000000000002
          - type: recall_at_100
            value: 51.385999999999996
          - type: recall_at_1000
            value: 80.49
          - type: recall_at_3
            value: 16.834
          - type: recall_at_5
            value: 20.317
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 70.40288634996993
          - type: cos_sim_ap
            value: 78.43387766087626
          - type: cos_sim_f1
            value: 73.09982840415867
          - type: cos_sim_precision
            value: 64.31616341030195
          - type: cos_sim_recall
            value: 84.66214636427402
          - type: dot_accuracy
            value: 65.52014431749849
          - type: dot_ap
            value: 70.89507344960353
          - type: dot_f1
            value: 70.7030509759333
          - type: dot_precision
            value: 59.43922255854708
          - type: dot_recall
            value: 87.2340425531915
          - type: euclidean_accuracy
            value: 69.84966927239927
          - type: euclidean_ap
            value: 78.08825177727368
          - type: euclidean_f1
            value: 72.68394399761692
          - type: euclidean_precision
            value: 63.16879530548844
          - type: euclidean_recall
            value: 85.57400046761748
          - type: manhattan_accuracy
            value: 69.9579073962718
          - type: manhattan_ap
            value: 78.38355697667261
          - type: manhattan_f1
            value: 73.06507508663844
          - type: manhattan_precision
            value: 62.10112911143839
          - type: manhattan_recall
            value: 88.73041851765257
          - type: max_accuracy
            value: 70.40288634996993
          - type: max_ap
            value: 78.43387766087626
          - type: max_f1
            value: 73.09982840415867
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 23.973
          - type: map_at_10
            value: 30.074
          - type: map_at_100
            value: 31.05
          - type: map_at_1000
            value: 31.147000000000002
          - type: map_at_3
            value: 27.977
          - type: map_at_5
            value: 29.247
          - type: mrr_at_1
            value: 24.025
          - type: mrr_at_10
            value: 30.093999999999998
          - type: mrr_at_100
            value: 31.068
          - type: mrr_at_1000
            value: 31.165
          - type: mrr_at_3
            value: 27.994000000000003
          - type: mrr_at_5
            value: 29.243000000000002
          - type: ndcg_at_1
            value: 24.025
          - type: ndcg_at_10
            value: 33.566
          - type: ndcg_at_100
            value: 38.818999999999996
          - type: ndcg_at_1000
            value: 41.477000000000004
          - type: ndcg_at_3
            value: 29.293000000000003
          - type: ndcg_at_5
            value: 31.564999999999998
          - type: precision_at_1
            value: 24.025
          - type: precision_at_10
            value: 4.489
          - type: precision_at_100
            value: 0.709
          - type: precision_at_1000
            value: 0.092
          - type: precision_at_3
            value: 11.064
          - type: precision_at_5
            value: 7.734000000000001
          - type: recall_at_1
            value: 23.973
          - type: recall_at_10
            value: 44.731
          - type: recall_at_100
            value: 70.52199999999999
          - type: recall_at_1000
            value: 91.491
          - type: recall_at_3
            value: 33.087
          - type: recall_at_5
            value: 38.567
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.950000000000001
          - type: map_at_10
            value: 13.236999999999998
          - type: map_at_100
            value: 16.137
          - type: map_at_1000
            value: 16.785
          - type: map_at_3
            value: 10.378
          - type: map_at_5
            value: 11.62
          - type: mrr_at_1
            value: 54
          - type: mrr_at_10
            value: 61.861
          - type: mrr_at_100
            value: 62.436
          - type: mrr_at_1000
            value: 62.456
          - type: mrr_at_3
            value: 60.458
          - type: mrr_at_5
            value: 61.208
          - type: ndcg_at_1
            value: 43.75
          - type: ndcg_at_10
            value: 28.224
          - type: ndcg_at_100
            value: 29.244999999999997
          - type: ndcg_at_1000
            value: 34.410000000000004
          - type: ndcg_at_3
            value: 33.955
          - type: ndcg_at_5
            value: 30.597
          - type: precision_at_1
            value: 54
          - type: precision_at_10
            value: 20.825
          - type: precision_at_100
            value: 5.462
          - type: precision_at_1000
            value: 1.1320000000000001
          - type: precision_at_3
            value: 37
          - type: precision_at_5
            value: 28.849999999999998
          - type: recall_at_1
            value: 6.950000000000001
          - type: recall_at_10
            value: 17.159
          - type: recall_at_100
            value: 31.657999999999998
          - type: recall_at_1000
            value: 49.155
          - type: recall_at_3
            value: 11.393
          - type: recall_at_5
            value: 13.568
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 16.333000000000002
          - type: map_at_10
            value: 44.080999999999996
          - type: map_at_100
            value: 47.958
          - type: map_at_1000
            value: 48.183
          - type: map_at_3
            value: 31.468
          - type: map_at_5
            value: 38.213
          - type: mrr_at_1
            value: 63
          - type: mrr_at_10
            value: 72.006
          - type: mrr_at_100
            value: 72.299
          - type: mrr_at_1000
            value: 72.313
          - type: mrr_at_3
            value: 70.375
          - type: mrr_at_5
            value: 71.33
          - type: ndcg_at_1
            value: 63
          - type: ndcg_at_10
            value: 56.044000000000004
          - type: ndcg_at_100
            value: 63.629999999999995
          - type: ndcg_at_1000
            value: 66.156
          - type: ndcg_at_3
            value: 55.85
          - type: ndcg_at_5
            value: 53.559
          - type: precision_at_1
            value: 63
          - type: precision_at_10
            value: 27.279999999999998
          - type: precision_at_100
            value: 4.005
          - type: precision_at_1000
            value: 0.462
          - type: precision_at_3
            value: 49.633
          - type: precision_at_5
            value: 40.6
          - type: recall_at_1
            value: 16.333000000000002
          - type: recall_at_10
            value: 57.152
          - type: recall_at_100
            value: 80.231
          - type: recall_at_1000
            value: 92.95400000000001
          - type: recall_at_3
            value: 34.793
          - type: recall_at_5
            value: 44.989000000000004
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 33.7
          - type: map_at_10
            value: 42.327999999999996
          - type: map_at_100
            value: 43.230000000000004
          - type: map_at_1000
            value: 43.274
          - type: map_at_3
            value: 39.883
          - type: map_at_5
            value: 41.178
          - type: mrr_at_1
            value: 33.7
          - type: mrr_at_10
            value: 42.327999999999996
          - type: mrr_at_100
            value: 43.230000000000004
          - type: mrr_at_1000
            value: 43.274
          - type: mrr_at_3
            value: 39.883
          - type: mrr_at_5
            value: 41.178
          - type: ndcg_at_1
            value: 33.7
          - type: ndcg_at_10
            value: 46.996
          - type: ndcg_at_100
            value: 51.629000000000005
          - type: ndcg_at_1000
            value: 52.823
          - type: ndcg_at_3
            value: 41.891
          - type: ndcg_at_5
            value: 44.232
          - type: precision_at_1
            value: 33.7
          - type: precision_at_10
            value: 6.1899999999999995
          - type: precision_at_100
            value: 0.8410000000000001
          - type: precision_at_1000
            value: 0.094
          - type: precision_at_3
            value: 15.9
          - type: precision_at_5
            value: 10.68
          - type: recall_at_1
            value: 33.7
          - type: recall_at_10
            value: 61.9
          - type: recall_at_100
            value: 84.1
          - type: recall_at_1000
            value: 93.60000000000001
          - type: recall_at_3
            value: 47.699999999999996
          - type: recall_at_5
            value: 53.400000000000006
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 44.76500000000001
          - type: f1
            value: 40.46330006682868
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 45.078
          - type: map_at_10
            value: 55.443
          - type: map_at_100
            value: 56.03900000000001
          - type: map_at_1000
            value: 56.067
          - type: map_at_3
            value: 53.174
          - type: map_at_5
            value: 54.510999999999996
          - type: mrr_at_1
            value: 48.575
          - type: mrr_at_10
            value: 59.194
          - type: mrr_at_100
            value: 59.760999999999996
          - type: mrr_at_1000
            value: 59.784000000000006
          - type: mrr_at_3
            value: 56.896
          - type: mrr_at_5
            value: 58.282000000000004
          - type: ndcg_at_1
            value: 48.575
          - type: ndcg_at_10
            value: 61.096
          - type: ndcg_at_100
            value: 63.94800000000001
          - type: ndcg_at_1000
            value: 64.68199999999999
          - type: ndcg_at_3
            value: 56.58
          - type: ndcg_at_5
            value: 58.928000000000004
          - type: precision_at_1
            value: 48.575
          - type: precision_at_10
            value: 8.18
          - type: precision_at_100
            value: 0.968
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 22.662
          - type: precision_at_5
            value: 14.881
          - type: recall_at_1
            value: 45.078
          - type: recall_at_10
            value: 75.057
          - type: recall_at_100
            value: 88.05199999999999
          - type: recall_at_1000
            value: 93.58999999999999
          - type: recall_at_3
            value: 62.77700000000001
          - type: recall_at_5
            value: 68.50699999999999
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 11.097999999999999
          - type: map_at_10
            value: 18.288
          - type: map_at_100
            value: 19.903000000000002
          - type: map_at_1000
            value: 20.108
          - type: map_at_3
            value: 15.576
          - type: map_at_5
            value: 16.997999999999998
          - type: mrr_at_1
            value: 23.302
          - type: mrr_at_10
            value: 30.978
          - type: mrr_at_100
            value: 32.072
          - type: mrr_at_1000
            value: 32.15
          - type: mrr_at_3
            value: 28.549000000000003
          - type: mrr_at_5
            value: 29.931
          - type: ndcg_at_1
            value: 23.302
          - type: ndcg_at_10
            value: 24.488
          - type: ndcg_at_100
            value: 31.052999999999997
          - type: ndcg_at_1000
            value: 35.124
          - type: ndcg_at_3
            value: 21.215999999999998
          - type: ndcg_at_5
            value: 22.314999999999998
          - type: precision_at_1
            value: 23.302
          - type: precision_at_10
            value: 7.13
          - type: precision_at_100
            value: 1.3559999999999999
          - type: precision_at_1000
            value: 0.20600000000000002
          - type: precision_at_3
            value: 14.198
          - type: precision_at_5
            value: 10.895000000000001
          - type: recall_at_1
            value: 11.097999999999999
          - type: recall_at_10
            value: 30.352
          - type: recall_at_100
            value: 54.937999999999995
          - type: recall_at_1000
            value: 79.586
          - type: recall_at_3
            value: 19.486
          - type: recall_at_5
            value: 23.860999999999997
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.325
          - type: map_at_10
            value: 37.305
          - type: map_at_100
            value: 38
          - type: map_at_1000
            value: 38.065
          - type: map_at_3
            value: 35.219
          - type: map_at_5
            value: 36.466
          - type: mrr_at_1
            value: 56.650999999999996
          - type: mrr_at_10
            value: 63.574
          - type: mrr_at_100
            value: 63.966
          - type: mrr_at_1000
            value: 63.992000000000004
          - type: mrr_at_3
            value: 62.107
          - type: mrr_at_5
            value: 62.976
          - type: ndcg_at_1
            value: 56.650999999999996
          - type: ndcg_at_10
            value: 46.046
          - type: ndcg_at_100
            value: 48.916
          - type: ndcg_at_1000
            value: 50.410999999999994
          - type: ndcg_at_3
            value: 42.516999999999996
          - type: ndcg_at_5
            value: 44.374
          - type: precision_at_1
            value: 56.650999999999996
          - type: precision_at_10
            value: 9.392
          - type: precision_at_100
            value: 1.166
          - type: precision_at_1000
            value: 0.13699999999999998
          - type: precision_at_3
            value: 26.068
          - type: precision_at_5
            value: 17.11
          - type: recall_at_1
            value: 28.325
          - type: recall_at_10
            value: 46.961999999999996
          - type: recall_at_100
            value: 58.318999999999996
          - type: recall_at_1000
            value: 68.298
          - type: recall_at_3
            value: 39.102
          - type: recall_at_5
            value: 42.775
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 40.461716044632546
          - type: f1
            value: 33.890745966734315
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 72.21000000000001
          - type: ap
            value: 66.59963731769069
          - type: f1
            value: 71.97616824840041
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 78.25515947467167
          - type: ap
            value: 38.265118237185064
          - type: f1
            value: 70.73962826410575
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 63.98362797180168
          - type: cos_sim_spearman
            value: 71.97575564053473
          - type: euclidean_pearson
            value: 70.56052438394708
          - type: euclidean_spearman
            value: 72.48267176371337
          - type: manhattan_pearson
            value: 70.7156268448442
          - type: manhattan_spearman
            value: 72.61065396802094
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 55.775
          - type: map_at_10
            value: 65.074
          - type: map_at_100
            value: 65.596
          - type: map_at_1000
            value: 65.618
          - type: map_at_3
            value: 62.92
          - type: map_at_5
            value: 64.277
          - type: mrr_at_1
            value: 57.708000000000006
          - type: mrr_at_10
            value: 65.824
          - type: mrr_at_100
            value: 66.286
          - type: mrr_at_1000
            value: 66.306
          - type: mrr_at_3
            value: 63.871
          - type: mrr_at_5
            value: 65.093
          - type: ndcg_at_1
            value: 57.708000000000006
          - type: ndcg_at_10
            value: 69.309
          - type: ndcg_at_100
            value: 71.723
          - type: ndcg_at_1000
            value: 72.313
          - type: ndcg_at_3
            value: 65.134
          - type: ndcg_at_5
            value: 67.476
          - type: precision_at_1
            value: 57.708000000000006
          - type: precision_at_10
            value: 8.668
          - type: precision_at_100
            value: 0.989
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 24.837999999999997
          - type: precision_at_5
            value: 16.128999999999998
          - type: recall_at_1
            value: 55.775
          - type: recall_at_10
            value: 81.702
          - type: recall_at_100
            value: 92.785
          - type: recall_at_1000
            value: 97.425
          - type: recall_at_3
            value: 70.587
          - type: recall_at_5
            value: 76.199
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 17.771
          - type: map_at_10
            value: 28.16
          - type: map_at_100
            value: 29.363
          - type: map_at_1000
            value: 29.431
          - type: map_at_3
            value: 24.767
          - type: map_at_5
            value: 26.706999999999997
          - type: mrr_at_1
            value: 18.252
          - type: mrr_at_10
            value: 28.666000000000004
          - type: mrr_at_100
            value: 29.837000000000003
          - type: mrr_at_1000
            value: 29.898999999999997
          - type: mrr_at_3
            value: 25.308000000000003
          - type: mrr_at_5
            value: 27.226
          - type: ndcg_at_1
            value: 18.252
          - type: ndcg_at_10
            value: 34.176
          - type: ndcg_at_100
            value: 40.138
          - type: ndcg_at_1000
            value: 41.923
          - type: ndcg_at_3
            value: 27.214
          - type: ndcg_at_5
            value: 30.695
          - type: precision_at_1
            value: 18.252
          - type: precision_at_10
            value: 5.503
          - type: precision_at_100
            value: 0.8500000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 11.667
          - type: precision_at_5
            value: 8.754000000000001
          - type: recall_at_1
            value: 17.771
          - type: recall_at_10
            value: 52.781
          - type: recall_at_100
            value: 80.638
          - type: recall_at_1000
            value: 94.46
          - type: recall_at_3
            value: 33.767
          - type: recall_at_5
            value: 42.172
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 89.93388052895577
          - type: f1
            value: 89.55553145791954
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (de)
          config: de
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 68.42490842490842
          - type: f1
            value: 67.01398674117826
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (es)
          config: es
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 88.2121414276184
          - type: f1
            value: 87.61981627763988
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (fr)
          config: fr
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 85.49013466958974
          - type: f1
            value: 85.09758510104221
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (hi)
          config: hi
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 84.22732162065257
          - type: f1
            value: 83.24580378090367
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (th)
          config: th
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 53.171790235081374
          - type: f1
            value: 51.93028909966765
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 66.5640674874601
          - type: f1
            value: 49.856876973153966
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (de)
          config: de
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 49.171597633136095
          - type: f1
            value: 32.166022205347545
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (es)
          config: es
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 65.71714476317545
          - type: f1
            value: 45.748971341625136
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (fr)
          config: fr
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 62.65267773253993
          - type: f1
            value: 45.904472624086026
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (hi)
          config: hi
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 61.8752240946576
          - type: f1
            value: 40.7359613185448
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (th)
          config: th
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 41.67088607594936
          - type: f1
            value: 28.12210726419673
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (af)
          config: af
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 43.29186281102892
          - type: f1
            value: 41.83461350696014
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (am)
          config: am
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 23.214525891055814
          - type: f1
            value: 22.364131190189962
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ar)
          config: ar
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 53.38264963012777
          - type: f1
            value: 50.74546702709091
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (az)
          config: az
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 39.55951580363147
          - type: f1
            value: 39.07769075741216
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (bn)
          config: bn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 56.73839946200403
          - type: f1
            value: 54.36728741542025
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (cy)
          config: cy
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 39.99663752521857
          - type: f1
            value: 38.709817953652596
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (da)
          config: da
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 46.933422999327504
          - type: f1
            value: 45.32022679895763
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (de)
          config: de
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 45.820443846671154
          - type: f1
            value: 42.853155158197886
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (el)
          config: el
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 37.874915938130464
          - type: f1
            value: 35.9849010888881
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.08944182918628
          - type: f1
            value: 64.5039080809391
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (es)
          config: es
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 61.17350369872226
          - type: f1
            value: 60.0792530132073
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fa)
          config: fa
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 45.652320107599195
          - type: f1
            value: 44.28182554287625
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fi)
          config: fi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 40.282447881640884
          - type: f1
            value: 38.79927524886836
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fr)
          config: fr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 62.60591795561533
          - type: f1
            value: 61.01451309609411
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (he)
          config: he
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 32.225958305312716
          - type: f1
            value: 30.903299940417906
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hi)
          config: hi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 59.46200403496974
          - type: f1
            value: 57.34556231956785
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hu)
          config: hu
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 40.907868190988566
          - type: f1
            value: 39.74702259997524
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (hy)
          config: hy
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 29.939475453934094
          - type: f1
            value: 28.462353413371353
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (id)
          config: id
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 59.14256893073302
          - type: f1
            value: 57.24600767871435
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (is)
          config: is
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 39.620040349697376
          - type: f1
            value: 38.414866180464735
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (it)
          config: it
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 51.772024209818426
          - type: f1
            value: 51.05050942366993
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ja)
          config: ja
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 53.749159381304636
          - type: f1
            value: 52.04563008527909
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (jv)
          config: jv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 46.29455279085406
          - type: f1
            value: 43.84047527739209
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ka)
          config: ka
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 25.107599193006045
          - type: f1
            value: 24.58731463875415
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (km)
          config: km
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 27.21923335574984
          - type: f1
            value: 25.964338481976796
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (kn)
          config: kn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 47.96906523201077
          - type: f1
            value: 45.32239408435578
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ko)
          config: ko
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 40.53799596503026
          - type: f1
            value: 39.15655510771227
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (lv)
          config: lv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 43.140551445864155
          - type: f1
            value: 42.12232733095163
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ml)
          config: ml
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 53.69199731002017
          - type: f1
            value: 50.67085509122796
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (mn)
          config: mn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 33.37256220578346
          - type: f1
            value: 33.39335560955231
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ms)
          config: ms
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 51.94014794889038
          - type: f1
            value: 50.6207021226521
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (my)
          config: my
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 25.322797579018157
          - type: f1
            value: 23.94164121951907
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nb)
          config: nb
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 44.11903160726294
          - type: f1
            value: 43.016752983579536
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (nl)
          config: nl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 44.03496973772697
          - type: f1
            value: 42.322828283176754
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pl)
          config: pl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 41.63080026899798
          - type: f1
            value: 39.58824644978166
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (pt)
          config: pt
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 61.7350369872226
          - type: f1
            value: 59.956752206079386
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ro)
          config: ro
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 45.72629455279086
          - type: f1
            value: 44.731249269647826
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ru)
          config: ru
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 47.61264290517822
          - type: f1
            value: 45.5280995218491
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sl)
          config: sl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 42.82784129119032
          - type: f1
            value: 41.37165985220223
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sq)
          config: sq
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 43.61466039004707
          - type: f1
            value: 43.164498227815535
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sv)
          config: sv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 44.64021519838602
          - type: f1
            value: 43.04775030948548
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (sw)
          config: sw
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 45.54808338937458
          - type: f1
            value: 44.011677633779975
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ta)
          config: ta
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 51.2441156691325
          - type: f1
            value: 48.73592932403811
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (te)
          config: te
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 47.43443174176195
          - type: f1
            value: 45.08686598891457
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (th)
          config: th
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 36.87962340282448
          - type: f1
            value: 36.50540864756967
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tl)
          config: tl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 45.9280430396772
          - type: f1
            value: 44.57216865343283
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (tr)
          config: tr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 38.591123066577
          - type: f1
            value: 37.886312373767446
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (ur)
          config: ur
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 51.85272360457296
          - type: f1
            value: 49.43461566216979
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (vi)
          config: vi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 58.72225958305313
          - type: f1
            value: 56.95500715299434
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 63.74915938130464
          - type: f1
            value: 62.35543158488615
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-TW)
          config: zh-TW
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 59.95292535305985
          - type: f1
            value: 59.73499569346673
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (af)
          config: af
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 47.42098184263618
          - type: f1
            value: 45.22541854557743
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (am)
          config: am
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 24.707464694014796
          - type: f1
            value: 24.033506081882468
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ar)
          config: ar
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 62.09145931405515
          - type: f1
            value: 62.22048940230962
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (az)
          config: az
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 39.25016812373907
          - type: f1
            value: 38.35431952425269
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (bn)
          config: bn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 63.37256220578345
          - type: f1
            value: 63.12728180326932
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (cy)
          config: cy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 39.172831203765966
          - type: f1
            value: 37.078841372640234
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (da)
          config: da
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 49.11230665770006
          - type: f1
            value: 46.489580286547245
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (de)
          config: de
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 50.7128446536651
          - type: f1
            value: 48.27782602378952
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (el)
          config: el
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 39.46536650975118
          - type: f1
            value: 37.4365280056047
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.26160053799597
          - type: f1
            value: 73.4478249967817
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (es)
          config: es
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 68.31203765971756
          - type: f1
            value: 68.70554437788068
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fa)
          config: fa
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 45.652320107599195
          - type: f1
            value: 44.55357745265521
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fi)
          config: fi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 38.94754539340955
          - type: f1
            value: 36.48927336173062
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fr)
          config: fr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 68.69872225958305
          - type: f1
            value: 68.81347966311543
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (he)
          config: he
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 32.131809011432416
          - type: f1
            value: 30.212230946937474
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hi)
          config: hi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 65.57498318762609
          - type: f1
            value: 65.16084751135229
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hu)
          config: hu
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 42.965702757229316
          - type: f1
            value: 40.575896627739105
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (hy)
          config: hy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 32.125084061869536
          - type: f1
            value: 30.708056882129476
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (id)
          config: id
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 65.10759919300607
          - type: f1
            value: 64.5007800119315
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (is)
          config: is
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 40.83725622057834
          - type: f1
            value: 37.855774705520886
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (it)
          config: it
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 54.55279085406859
          - type: f1
            value: 52.73318944173822
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ja)
          config: ja
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 57.14525891055817
          - type: f1
            value: 55.96714177558203
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (jv)
          config: jv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 49.30060524546065
          - type: f1
            value: 47.82999154670342
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ka)
          config: ka
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 25.85743106926698
          - type: f1
            value: 24.974946990729716
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (km)
          config: km
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 31.180228648285137
          - type: f1
            value: 28.22387838219335
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (kn)
          config: kn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 53.00941492938802
          - type: f1
            value: 52.39610045092559
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ko)
          config: ko
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 40.24546065904505
          - type: f1
            value: 38.99779773215032
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (lv)
          config: lv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 41.88298587760592
          - type: f1
            value: 39.53867071594289
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ml)
          config: ml
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 59.078681909885674
          - type: f1
            value: 58.47368723772022
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (mn)
          config: mn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 33.33893745796907
          - type: f1
            value: 32.113466354321226
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ms)
          config: ms
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 57.454606590450574
          - type: f1
            value: 56.13075383338251
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (my)
          config: my
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 27.19569603227976
          - type: f1
            value: 26.300773160344015
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nb)
          config: nb
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 46.78547410894418
          - type: f1
            value: 44.233771335183015
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (nl)
          config: nl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 48.4196368527236
          - type: f1
            value: 45.55838648206857
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pl)
          config: pl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 41.63080026899798
          - type: f1
            value: 40.77775839499525
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (pt)
          config: pt
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 66.408876933423
          - type: f1
            value: 66.7358693871042
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ro)
          config: ro
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 50.077336919973106
          - type: f1
            value: 48.572749739090014
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ru)
          config: ru
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 49.942837928715534
          - type: f1
            value: 49.34771836662566
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sl)
          config: sl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 43.43308675184936
          - type: f1
            value: 41.818008297000986
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sq)
          config: sq
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 44.082044384667114
          - type: f1
            value: 43.25002746432129
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sv)
          config: sv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 46.45258910558171
          - type: f1
            value: 44.00958237591922
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (sw)
          config: sw
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 49.53261600537996
          - type: f1
            value: 48.01969699634672
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ta)
          config: ta
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 56.792199058507066
          - type: f1
            value: 56.54421925671813
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (te)
          config: te
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 54.0114324142569
          - type: f1
            value: 52.29830350891558
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (th)
          config: th
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 38.584398117014125
          - type: f1
            value: 36.551426239639575
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tl)
          config: tl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 48.07330195023538
          - type: f1
            value: 46.463553675519975
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (tr)
          config: tr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 40.645595158036315
          - type: f1
            value: 40.21280676607986
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (ur)
          config: ur
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 57.74714189643577
          - type: f1
            value: 56.8673027258351
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (vi)
          config: vi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 65.83389374579693
          - type: f1
            value: 66.11273939782248
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 72.38735709482181
          - type: f1
            value: 72.89481650271512
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-TW)
          config: zh-TW
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 69.63685272360458
          - type: f1
            value: 70.72285841806938
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 30.8
          - type: map_at_10
            value: 34.782000000000004
          - type: map_at_100
            value: 35.333999999999996
          - type: map_at_1000
            value: 35.405
          - type: map_at_3
            value: 34
          - type: map_at_5
            value: 34.345
          - type: mrr_at_1
            value: 30.8
          - type: mrr_at_10
            value: 34.782000000000004
          - type: mrr_at_100
            value: 35.333999999999996
          - type: mrr_at_1000
            value: 35.405
          - type: mrr_at_3
            value: 34
          - type: mrr_at_5
            value: 34.345
          - type: ndcg_at_1
            value: 30.8
          - type: ndcg_at_10
            value: 36.675000000000004
          - type: ndcg_at_100
            value: 39.633
          - type: ndcg_at_1000
            value: 41.904
          - type: ndcg_at_3
            value: 35.028
          - type: ndcg_at_5
            value: 35.648
          - type: precision_at_1
            value: 30.8
          - type: precision_at_10
            value: 4.26
          - type: precision_at_100
            value: 0.571
          - type: precision_at_1000
            value: 0.076
          - type: precision_at_3
            value: 12.667
          - type: precision_at_5
            value: 7.9
          - type: recall_at_1
            value: 30.8
          - type: recall_at_10
            value: 42.6
          - type: recall_at_100
            value: 57.099999999999994
          - type: recall_at_1000
            value: 75.8
          - type: recall_at_3
            value: 38
          - type: recall_at_5
            value: 39.5
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 27.84536559870361
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 27.714921841841605
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 30.52145905910035
          - type: mrr
            value: 31.551577344311845
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 23.6853605350459
          - type: mrr
            value: 22.341269841269842
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 63.16666666666666
          - type: f1
            value: 63.09453591106835
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.7060000000000004
          - type: map_at_10
            value: 9.032
          - type: map_at_100
            value: 11.395
          - type: map_at_1000
            value: 12.713
          - type: map_at_3
            value: 6.502
          - type: map_at_5
            value: 7.8100000000000005
          - type: mrr_at_1
            value: 37.461
          - type: mrr_at_10
            value: 45.839999999999996
          - type: mrr_at_100
            value: 46.513
          - type: mrr_at_1000
            value: 46.571
          - type: mrr_at_3
            value: 43.55
          - type: mrr_at_5
            value: 44.773
          - type: ndcg_at_1
            value: 35.913000000000004
          - type: ndcg_at_10
            value: 27.340999999999998
          - type: ndcg_at_100
            value: 25.197000000000003
          - type: ndcg_at_1000
            value: 34.632000000000005
          - type: ndcg_at_3
            value: 31.952
          - type: ndcg_at_5
            value: 30.244
          - type: precision_at_1
            value: 37.461
          - type: precision_at_10
            value: 20.495
          - type: precision_at_100
            value: 6.551
          - type: precision_at_1000
            value: 1.966
          - type: precision_at_3
            value: 30.753000000000004
          - type: precision_at_5
            value: 26.935
          - type: recall_at_1
            value: 3.7060000000000004
          - type: recall_at_10
            value: 12.958
          - type: recall_at_100
            value: 26.582
          - type: recall_at_1000
            value: 59.724
          - type: recall_at_3
            value: 7.503
          - type: recall_at_5
            value: 9.808
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.201999999999998
          - type: map_at_10
            value: 33.76
          - type: map_at_100
            value: 34.867
          - type: map_at_1000
            value: 34.92
          - type: map_at_3
            value: 30.233999999999998
          - type: map_at_5
            value: 32.291
          - type: mrr_at_1
            value: 25.232
          - type: mrr_at_10
            value: 36.239
          - type: mrr_at_100
            value: 37.119
          - type: mrr_at_1000
            value: 37.162
          - type: mrr_at_3
            value: 33.213
          - type: mrr_at_5
            value: 35.02
          - type: ndcg_at_1
            value: 25.232
          - type: ndcg_at_10
            value: 40.046
          - type: ndcg_at_100
            value: 45.025
          - type: ndcg_at_1000
            value: 46.459
          - type: ndcg_at_3
            value: 33.343
          - type: ndcg_at_5
            value: 36.801
          - type: precision_at_1
            value: 25.232
          - type: precision_at_10
            value: 6.796
          - type: precision_at_100
            value: 0.959
          - type: precision_at_1000
            value: 0.109
          - type: precision_at_3
            value: 15.276
          - type: precision_at_5
            value: 11.17
          - type: recall_at_1
            value: 22.201999999999998
          - type: recall_at_10
            value: 56.733
          - type: recall_at_100
            value: 79.041
          - type: recall_at_1000
            value: 90.08500000000001
          - type: recall_at_3
            value: 39.412000000000006
          - type: recall_at_5
            value: 47.352
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 62.53383865728208
          - type: cos_sim_ap
            value: 66.3197921045625
          - type: cos_sim_f1
            value: 69.3385214007782
          - type: cos_sim_precision
            value: 54.89833641404805
          - type: cos_sim_recall
            value: 94.08658922914466
          - type: dot_accuracy
            value: 59.7184623714131
          - type: dot_ap
            value: 61.53586693000539
          - type: dot_f1
            value: 68.26923076923077
          - type: dot_precision
            value: 52.53272623790552
          - type: dot_recall
            value: 97.46568109820485
          - type: euclidean_accuracy
            value: 62.912831618841366
          - type: euclidean_ap
            value: 67.15479155849464
          - type: euclidean_f1
            value: 70.64071370640713
          - type: euclidean_precision
            value: 57.34035549703752
          - type: euclidean_recall
            value: 91.97465681098205
          - type: manhattan_accuracy
            value: 63.50839198700595
          - type: manhattan_ap
            value: 67.55807251483273
          - type: manhattan_f1
            value: 70.58356490670901
          - type: manhattan_precision
            value: 56.55216284987278
          - type: manhattan_recall
            value: 93.8753959873284
          - type: max_accuracy
            value: 63.50839198700595
          - type: max_ap
            value: 67.55807251483273
          - type: max_f1
            value: 70.64071370640713
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 87.11
          - type: ap
            value: 84.20351278644551
          - type: f1
            value: 87.10043002123766
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 13.050279647770473
          - type: cos_sim_spearman
            value: 14.227909232579874
          - type: euclidean_pearson
            value: 16.372629300358096
          - type: euclidean_spearman
            value: 14.68140021547196
          - type: manhattan_pearson
            value: 16.266960163157336
          - type: manhattan_spearman
            value: 14.627750758965616
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 30.56036276943463
          - type: cos_sim_spearman
            value: 32.918859292204
          - type: euclidean_pearson
            value: 31.679745438037195
          - type: euclidean_spearman
            value: 33.68461814972644
          - type: manhattan_pearson
            value: 31.994557954084563
          - type: manhattan_spearman
            value: 33.97758185204816
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 68.327
          - type: map_at_10
            value: 81.938
          - type: map_at_100
            value: 82.581
          - type: map_at_1000
            value: 82.60300000000001
          - type: map_at_3
            value: 78.89399999999999
          - type: map_at_5
            value: 80.816
          - type: mrr_at_1
            value: 78.75
          - type: mrr_at_10
            value: 85.302
          - type: mrr_at_100
            value: 85.432
          - type: mrr_at_1000
            value: 85.434
          - type: mrr_at_3
            value: 84.128
          - type: mrr_at_5
            value: 84.91199999999999
          - type: ndcg_at_1
            value: 78.74
          - type: ndcg_at_10
            value: 86.042
          - type: ndcg_at_100
            value: 87.468
          - type: ndcg_at_1000
            value: 87.641
          - type: ndcg_at_3
            value: 82.799
          - type: ndcg_at_5
            value: 84.603
          - type: precision_at_1
            value: 78.74
          - type: precision_at_10
            value: 13.071
          - type: precision_at_100
            value: 1.508
          - type: precision_at_1000
            value: 0.156
          - type: precision_at_3
            value: 36.08
          - type: precision_at_5
            value: 23.87
          - type: recall_at_1
            value: 68.327
          - type: recall_at_10
            value: 93.962
          - type: recall_at_100
            value: 99.054
          - type: recall_at_1000
            value: 99.9
          - type: recall_at_3
            value: 84.788
          - type: recall_at_5
            value: 89.73
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 41.337989152483956
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 51.2046136625677
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 3.763
          - type: map_at_10
            value: 8.785
          - type: map_at_100
            value: 10.266
          - type: map_at_1000
            value: 10.506
          - type: map_at_3
            value: 6.551
          - type: map_at_5
            value: 7.670000000000001
          - type: mrr_at_1
            value: 18.5
          - type: mrr_at_10
            value: 27.771
          - type: mrr_at_100
            value: 28.842000000000002
          - type: mrr_at_1000
            value: 28.913
          - type: mrr_at_3
            value: 24.767
          - type: mrr_at_5
            value: 26.457000000000004
          - type: ndcg_at_1
            value: 18.5
          - type: ndcg_at_10
            value: 15.312000000000001
          - type: ndcg_at_100
            value: 21.599
          - type: ndcg_at_1000
            value: 26.473999999999997
          - type: ndcg_at_3
            value: 14.821000000000002
          - type: ndcg_at_5
            value: 12.836
          - type: precision_at_1
            value: 18.5
          - type: precision_at_10
            value: 7.779999999999999
          - type: precision_at_100
            value: 1.69
          - type: precision_at_1000
            value: 0.28700000000000003
          - type: precision_at_3
            value: 13.667000000000002
          - type: precision_at_5
            value: 11.08
          - type: recall_at_1
            value: 3.763
          - type: recall_at_10
            value: 15.798000000000002
          - type: recall_at_100
            value: 34.313
          - type: recall_at_1000
            value: 58.318000000000005
          - type: recall_at_3
            value: 8.312999999999999
          - type: recall_at_5
            value: 11.238
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 84.33402689861924
          - type: cos_sim_spearman
            value: 78.52738315932625
          - type: euclidean_pearson
            value: 80.800678573052
          - type: euclidean_spearman
            value: 77.86666946799137
          - type: manhattan_pearson
            value: 81.03106755866989
          - type: manhattan_spearman
            value: 78.0676393879487
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 81.86998503723257
          - type: cos_sim_spearman
            value: 74.07437934108376
          - type: euclidean_pearson
            value: 80.91626452869946
          - type: euclidean_spearman
            value: 76.88419802521403
          - type: manhattan_pearson
            value: 81.50196980117957
          - type: manhattan_spearman
            value: 77.2456891009073
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 81.19616084290932
          - type: cos_sim_spearman
            value: 81.80834431353927
          - type: euclidean_pearson
            value: 81.25429737195789
          - type: euclidean_spearman
            value: 82.00934127307355
          - type: manhattan_pearson
            value: 81.67403556759655
          - type: manhattan_spearman
            value: 82.42359818976753
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 81.50884725941148
          - type: cos_sim_spearman
            value: 77.0493522248929
          - type: euclidean_pearson
            value: 79.15856111178543
          - type: euclidean_spearman
            value: 77.24292975474096
          - type: manhattan_pearson
            value: 79.22641788874807
          - type: manhattan_spearman
            value: 77.37101663798234
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 83.75652767224308
          - type: cos_sim_spearman
            value: 84.61113973428688
          - type: euclidean_pearson
            value: 83.73646379542737
          - type: euclidean_spearman
            value: 84.47126779405652
          - type: manhattan_pearson
            value: 83.89617307570857
          - type: manhattan_spearman
            value: 84.6073703393468
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 81.16302763567215
          - type: cos_sim_spearman
            value: 83.08923353997561
          - type: euclidean_pearson
            value: 80.08338016232464
          - type: euclidean_spearman
            value: 80.40181608724076
          - type: manhattan_pearson
            value: 80.02358856208708
          - type: manhattan_spearman
            value: 80.30032329982274
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ko-ko)
          config: ko-ko
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 56.45965932801117
          - type: cos_sim_spearman
            value: 57.28270045199294
          - type: euclidean_pearson
            value: 57.3615782157595
          - type: euclidean_spearman
            value: 56.94348399074146
          - type: manhattan_pearson
            value: 57.9426531718209
          - type: manhattan_spearman
            value: 57.61844831263504
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (ar-ar)
          config: ar-ar
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 80.2973366536596
          - type: cos_sim_spearman
            value: 80.60259304741632
          - type: euclidean_pearson
            value: 78.30266089843892
          - type: euclidean_spearman
            value: 78.06065126709282
          - type: manhattan_pearson
            value: 78.61370380599344
          - type: manhattan_spearman
            value: 78.45738598619143
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-ar)
          config: en-ar
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 72.35020162217042
          - type: cos_sim_spearman
            value: 72.59857902847162
          - type: euclidean_pearson
            value: 65.03547299350457
          - type: euclidean_spearman
            value: 64.16617373109685
          - type: manhattan_pearson
            value: 65.68996569454929
          - type: manhattan_spearman
            value: 64.88542254595046
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-de)
          config: en-de
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 39.766484883595425
          - type: cos_sim_spearman
            value: 40.3429946300341
          - type: euclidean_pearson
            value: 39.47427150040957
          - type: euclidean_spearman
            value: 39.072525589079696
          - type: manhattan_pearson
            value: 40.56345338078474
          - type: manhattan_spearman
            value: 40.444629078138036
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 88.83798941013089
          - type: cos_sim_spearman
            value: 89.15159294402415
          - type: euclidean_pearson
            value: 87.9810618414505
          - type: euclidean_spearman
            value: 87.90818542026535
          - type: manhattan_pearson
            value: 88.06116863048229
          - type: manhattan_spearman
            value: 88.00182442010694
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-tr)
          config: en-tr
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 7.416028059666332
          - type: cos_sim_spearman
            value: 6.792945857606915
          - type: euclidean_pearson
            value: 11.485332917116061
          - type: euclidean_spearman
            value: 9.793932873423419
          - type: manhattan_pearson
            value: 9.148469412558393
          - type: manhattan_spearman
            value: 7.803450524017845
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-en)
          config: es-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 80.16381852152489
          - type: cos_sim_spearman
            value: 81.80324089694928
          - type: euclidean_pearson
            value: 76.41433274302783
          - type: euclidean_spearman
            value: 77.15238726996526
          - type: manhattan_pearson
            value: 77.08610108551368
          - type: manhattan_spearman
            value: 77.99971298324311
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (es-es)
          config: es-es
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 85.11032272383456
          - type: cos_sim_spearman
            value: 85.64528002839239
          - type: euclidean_pearson
            value: 85.54301672487198
          - type: euclidean_spearman
            value: 84.21727806530393
          - type: manhattan_pearson
            value: 85.57145576255618
          - type: manhattan_spearman
            value: 84.07127479487694
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (fr-en)
          config: fr-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 79.73703272230806
          - type: cos_sim_spearman
            value: 79.9424510113259
          - type: euclidean_pearson
            value: 77.64485173960838
          - type: euclidean_spearman
            value: 77.54693014468836
          - type: manhattan_pearson
            value: 77.96911553781774
          - type: manhattan_spearman
            value: 77.87266778206842
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (it-en)
          config: it-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 37.260672179617515
          - type: cos_sim_spearman
            value: 34.80434004457536
          - type: euclidean_pearson
            value: 38.55806751295782
          - type: euclidean_spearman
            value: 36.129700913023115
          - type: manhattan_pearson
            value: 40.74316244582763
          - type: manhattan_spearman
            value: 38.60667540883322
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (nl-en)
          config: nl-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 38.038311386574456
          - type: cos_sim_spearman
            value: 33.576193063894195
          - type: euclidean_pearson
            value: 33.712663568034316
          - type: euclidean_spearman
            value: 32.560617375956916
          - type: manhattan_pearson
            value: 35.60457167895616
          - type: manhattan_spearman
            value: 34.63036216555931
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 61.01583638162472
          - type: cos_sim_spearman
            value: 62.92281428893316
          - type: euclidean_pearson
            value: 62.939630289711815
          - type: euclidean_spearman
            value: 64.15209661725994
          - type: manhattan_pearson
            value: 64.24261705090608
          - type: manhattan_spearman
            value: 64.78283158164017
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de)
          config: de
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 21.529440799555704
          - type: cos_sim_spearman
            value: 26.62727800620091
          - type: euclidean_pearson
            value: 16.837244578590123
          - type: euclidean_spearman
            value: 25.012107525591425
          - type: manhattan_pearson
            value: 18.445531476179454
          - type: manhattan_spearman
            value: 27.070240480795153
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es)
          config: es
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 49.655500043363624
          - type: cos_sim_spearman
            value: 56.31248457847469
          - type: euclidean_pearson
            value: 48.787154598246616
          - type: euclidean_spearman
            value: 52.90454409579225
          - type: manhattan_pearson
            value: 55.392327232639836
          - type: manhattan_spearman
            value: 57.3726886727899
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl)
          config: pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 2.9137753115190304
          - type: cos_sim_spearman
            value: 15.062114976486532
          - type: euclidean_pearson
            value: -2.034404984782681
          - type: euclidean_spearman
            value: 14.683481835467338
          - type: manhattan_pearson
            value: -0.22204468354050833
          - type: manhattan_spearman
            value: 15.526420635759743
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (tr)
          config: tr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 4.3616620418459915
          - type: cos_sim_spearman
            value: 22.11078316878173
          - type: euclidean_pearson
            value: 15.111514877123403
          - type: euclidean_spearman
            value: 21.232869644925973
          - type: manhattan_pearson
            value: 19.71276925909529
          - type: manhattan_spearman
            value: 25.704469862313466
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ar)
          config: ar
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 44.25888840250496
          - type: cos_sim_spearman
            value: 54.82352971568842
          - type: euclidean_pearson
            value: 48.00261414068268
          - type: euclidean_spearman
            value: 53.3721608428832
          - type: manhattan_pearson
            value: 50.6442021864215
          - type: manhattan_spearman
            value: 55.352339945631954
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (ru)
          config: ru
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 0.08233514100531068
          - type: cos_sim_spearman
            value: 28.771721168834276
          - type: euclidean_pearson
            value: 10.783524938899138
          - type: euclidean_spearman
            value: 24.67831010432439
          - type: manhattan_pearson
            value: 16.98415610436092
          - type: manhattan_spearman
            value: 25.81670115913176
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 36.86678706245425
          - type: cos_sim_spearman
            value: 40.9736918674032
          - type: euclidean_pearson
            value: 26.42365971768556
          - type: euclidean_spearman
            value: 30.479818788692054
          - type: manhattan_pearson
            value: 41.08694658968258
          - type: manhattan_spearman
            value: 45.080877435751084
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr)
          config: fr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 75.98114217777062
          - type: cos_sim_spearman
            value: 78.7295845730892
          - type: euclidean_pearson
            value: 76.99433076522276
          - type: euclidean_spearman
            value: 79.71421663258973
          - type: manhattan_pearson
            value: 78.65656344143478
          - type: manhattan_spearman
            value: 80.60968909615123
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-en)
          config: de-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 47.33261398683554
          - type: cos_sim_spearman
            value: 49.547954534754666
          - type: euclidean_pearson
            value: 48.23362592012922
          - type: euclidean_spearman
            value: 49.17277986369927
          - type: manhattan_pearson
            value: 49.06792311033889
          - type: manhattan_spearman
            value: 51.27529282708198
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-en)
          config: es-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 66.10070360470756
          - type: cos_sim_spearman
            value: 71.03150249855938
          - type: euclidean_pearson
            value: 67.05372897033872
          - type: euclidean_spearman
            value: 69.73291838049877
          - type: manhattan_pearson
            value: 70.34740916239467
          - type: manhattan_spearman
            value: 72.40053406658815
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (it)
          config: it
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 56.581317404418904
          - type: cos_sim_spearman
            value: 62.61318021096797
          - type: euclidean_pearson
            value: 57.4403074342031
          - type: euclidean_spearman
            value: 60.04897783631694
          - type: manhattan_pearson
            value: 58.441729285803014
          - type: manhattan_spearman
            value: 60.70510326005463
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (pl-en)
          config: pl-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 47.064414464023905
          - type: cos_sim_spearman
            value: 43.716659075869465
          - type: euclidean_pearson
            value: 43.81699490724336
          - type: euclidean_spearman
            value: 43.784380306563726
          - type: manhattan_pearson
            value: 53.664583329563264
          - type: manhattan_spearman
            value: 45.399271192350135
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh-en)
          config: zh-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 63.585903017365055
          - type: cos_sim_spearman
            value: 63.90147651068459
          - type: euclidean_pearson
            value: 50.21918146173064
          - type: euclidean_spearman
            value: 53.02530618040754
          - type: manhattan_pearson
            value: 62.7472089813117
          - type: manhattan_spearman
            value: 63.90440606248973
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (es-it)
          config: es-it
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 59.06715980430013
          - type: cos_sim_spearman
            value: 61.2993294424547
          - type: euclidean_pearson
            value: 53.67335552456426
          - type: euclidean_spearman
            value: 55.32940583953816
          - type: manhattan_pearson
            value: 58.08097600675386
          - type: manhattan_spearman
            value: 57.1966250850173
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-fr)
          config: de-fr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 18.94271219818519
          - type: cos_sim_spearman
            value: 22.355519793818935
          - type: euclidean_pearson
            value: 14.336479135636187
          - type: euclidean_spearman
            value: 18.862751864788684
          - type: manhattan_pearson
            value: 14.481730447681057
          - type: manhattan_spearman
            value: 17.572142526671563
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (de-pl)
          config: de-pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 20.644357537446464
          - type: cos_sim_spearman
            value: 35.32083671407284
          - type: euclidean_pearson
            value: 28.24720906134992
          - type: euclidean_spearman
            value: 46.437508077438395
          - type: manhattan_pearson
            value: 42.09834718968137
          - type: manhattan_spearman
            value: 53.02744622635869
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr-pl)
          config: fr-pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 71.84986730523782
          - type: cos_sim_spearman
            value: 73.24670207647144
          - type: euclidean_pearson
            value: 62.450055500805604
          - type: euclidean_spearman
            value: 61.97797868009122
          - type: manhattan_pearson
            value: 56.32083882980946
          - type: manhattan_spearman
            value: 39.440531887330785
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 78.11479317838469
          - type: cos_sim_spearman
            value: 77.7709743500025
          - type: euclidean_pearson
            value: 78.83834281752932
          - type: euclidean_spearman
            value: 78.21978829646487
          - type: manhattan_pearson
            value: 79.36075578990533
          - type: manhattan_spearman
            value: 78.72958965446072
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 82.92539499228975
          - type: cos_sim_spearman
            value: 83.63025944536395
          - type: euclidean_pearson
            value: 81.54744230098872
          - type: euclidean_spearman
            value: 81.08707735758752
          - type: manhattan_pearson
            value: 81.50252353111375
          - type: manhattan_spearman
            value: 81.00641210322735
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 75.12690809334019
          - type: mrr
            value: 92.28846951886169
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 47.15
          - type: map_at_10
            value: 56.748
          - type: map_at_100
            value: 57.528999999999996
          - type: map_at_1000
            value: 57.56400000000001
          - type: map_at_3
            value: 53.691
          - type: map_at_5
            value: 55.656000000000006
          - type: mrr_at_1
            value: 49.667
          - type: mrr_at_10
            value: 58.24700000000001
          - type: mrr_at_100
            value: 58.855000000000004
          - type: mrr_at_1000
            value: 58.888
          - type: mrr_at_3
            value: 55.72200000000001
          - type: mrr_at_5
            value: 57.272
          - type: ndcg_at_1
            value: 49.667
          - type: ndcg_at_10
            value: 61.739
          - type: ndcg_at_100
            value: 65.17399999999999
          - type: ndcg_at_1000
            value: 66.122
          - type: ndcg_at_3
            value: 56.266000000000005
          - type: ndcg_at_5
            value: 59.357000000000006
          - type: precision_at_1
            value: 49.667
          - type: precision_at_10
            value: 8.5
          - type: precision_at_100
            value: 1.04
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 22.111
          - type: precision_at_5
            value: 15.133
          - type: recall_at_1
            value: 47.15
          - type: recall_at_10
            value: 75.52799999999999
          - type: recall_at_100
            value: 91.167
          - type: recall_at_1000
            value: 98.667
          - type: recall_at_3
            value: 60.978
          - type: recall_at_5
            value: 68.839
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.71188118811881
          - type: cos_sim_ap
            value: 92.0858173884619
          - type: cos_sim_f1
            value: 85.48864758144126
          - type: cos_sim_precision
            value: 84.40545808966861
          - type: cos_sim_recall
            value: 86.6
          - type: dot_accuracy
            value: 99.57722772277228
          - type: dot_ap
            value: 83.92226742515372
          - type: dot_f1
            value: 78.85091629519565
          - type: dot_precision
            value: 78.11579980372915
          - type: dot_recall
            value: 79.60000000000001
          - type: euclidean_accuracy
            value: 99.6970297029703
          - type: euclidean_ap
            value: 91.69378964699095
          - type: euclidean_f1
            value: 85.08771929824562
          - type: euclidean_precision
            value: 82.98479087452472
          - type: euclidean_recall
            value: 87.3
          - type: manhattan_accuracy
            value: 99.7019801980198
          - type: manhattan_ap
            value: 92.00969741996086
          - type: manhattan_f1
            value: 84.95752123938031
          - type: manhattan_precision
            value: 84.91508491508492
          - type: manhattan_recall
            value: 85
          - type: max_accuracy
            value: 99.71188118811881
          - type: max_ap
            value: 92.0858173884619
          - type: max_f1
            value: 85.48864758144126
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 54.50675991473899
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 31.12415042272221
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 47.37961638353922
          - type: mrr
            value: 48.04425558102029
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 31.358583236464177
          - type: cos_sim_spearman
            value: 32.06044850511017
          - type: dot_pearson
            value: 30.36343303587471
          - type: dot_spearman
            value: 30.303932242144704
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 63.73951666189072
          - type: mrr
            value: 73.54706021429108
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 16.892
          - type: map_at_10
            value: 40.215
          - type: map_at_100
            value: 43.9
          - type: map_at_1000
            value: 44.185
          - type: map_at_3
            value: 30.008000000000003
          - type: map_at_5
            value: 35.465
          - type: mrr_at_1
            value: 63.931000000000004
          - type: mrr_at_10
            value: 70.35
          - type: mrr_at_100
            value: 70.762
          - type: mrr_at_1000
            value: 70.784
          - type: mrr_at_3
            value: 68.863
          - type: mrr_at_5
            value: 69.758
          - type: ndcg_at_1
            value: 63.931000000000004
          - type: ndcg_at_10
            value: 51.573
          - type: ndcg_at_100
            value: 59.067
          - type: ndcg_at_1000
            value: 62.388
          - type: ndcg_at_3
            value: 55.422000000000004
          - type: ndcg_at_5
            value: 52.322
          - type: precision_at_1
            value: 63.931000000000004
          - type: precision_at_10
            value: 25.373
          - type: precision_at_100
            value: 3.894
          - type: precision_at_1000
            value: 0.47400000000000003
          - type: precision_at_3
            value: 48.083
          - type: precision_at_5
            value: 38.513
          - type: recall_at_1
            value: 16.892
          - type: recall_at_10
            value: 49.945
          - type: recall_at_100
            value: 73.41499999999999
          - type: recall_at_1000
            value: 89.776
          - type: recall_at_3
            value: 32.544000000000004
          - type: recall_at_5
            value: 40.501
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 44.153999999999996
          - type: f1
            value: 42.69123774230511
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.22300000000000003
          - type: map_at_10
            value: 1.7999999999999998
          - type: map_at_100
            value: 9.098
          - type: map_at_1000
            value: 20.59
          - type: map_at_3
            value: 0.6459999999999999
          - type: map_at_5
            value: 1.006
          - type: mrr_at_1
            value: 84
          - type: mrr_at_10
            value: 91.5
          - type: mrr_at_100
            value: 91.5
          - type: mrr_at_1000
            value: 91.5
          - type: mrr_at_3
            value: 91
          - type: mrr_at_5
            value: 91.5
          - type: ndcg_at_1
            value: 80
          - type: ndcg_at_10
            value: 72.992
          - type: ndcg_at_100
            value: 51.778999999999996
          - type: ndcg_at_1000
            value: 44.473
          - type: ndcg_at_3
            value: 77.531
          - type: ndcg_at_5
            value: 74.685
          - type: precision_at_1
            value: 84
          - type: precision_at_10
            value: 78.60000000000001
          - type: precision_at_100
            value: 52.800000000000004
          - type: precision_at_1000
            value: 19.736
          - type: precision_at_3
            value: 83.333
          - type: precision_at_5
            value: 80
          - type: recall_at_1
            value: 0.22300000000000003
          - type: recall_at_10
            value: 2.016
          - type: recall_at_100
            value: 12.21
          - type: recall_at_1000
            value: 41.427
          - type: recall_at_3
            value: 0.6839999999999999
          - type: recall_at_5
            value: 1.083
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (sqi-eng)
          config: sqi-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 11
          - type: f1
            value: 8.487309997179562
          - type: precision
            value: 7.935185890268856
          - type: recall
            value: 11
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fry-eng)
          config: fry-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 23.699421965317917
          - type: f1
            value: 18.09982567208001
          - type: precision
            value: 16.582017825552963
          - type: recall
            value: 23.699421965317917
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kur-eng)
          config: kur-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.780487804878048
          - type: f1
            value: 6.484836753129436
          - type: precision
            value: 5.916220801747723
          - type: recall
            value: 8.780487804878048
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tur-eng)
          config: tur-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5
          - type: f1
            value: 3.493223480735001
          - type: precision
            value: 3.1492116349139385
          - type: recall
            value: 5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (deu-eng)
          config: deu-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 33.6
          - type: f1
            value: 29.339340352229065
          - type: precision
            value: 27.997920626374693
          - type: recall
            value: 33.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nld-eng)
          config: nld-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 20.200000000000003
          - type: f1
            value: 16.330981736231458
          - type: precision
            value: 15.250949969794044
          - type: recall
            value: 20.200000000000003
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ron-eng)
          config: ron-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 19.6
          - type: f1
            value: 14.951120083366323
          - type: precision
            value: 13.617335362707001
          - type: recall
            value: 19.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ang-eng)
          config: ang-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 20.149253731343283
          - type: f1
            value: 13.312899786780385
          - type: precision
            value: 11.979388770433545
          - type: recall
            value: 20.149253731343283
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ido-eng)
          config: ido-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 31.4
          - type: f1
            value: 26.21323201417634
          - type: precision
            value: 24.607830064672168
          - type: recall
            value: 31.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (jav-eng)
          config: jav-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 18.048780487804876
          - type: f1
            value: 14.347798542920492
          - type: precision
            value: 13.301672920575362
          - type: recall
            value: 18.048780487804876
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (isl-eng)
          config: isl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5.2
          - type: f1
            value: 3.2713297295122503
          - type: precision
            value: 2.978548911585725
          - type: recall
            value: 5.2
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (slv-eng)
          config: slv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 7.411907654921021
          - type: f1
            value: 5.412915976323278
          - type: precision
            value: 4.975402373122839
          - type: recall
            value: 7.411907654921021
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cym-eng)
          config: cym-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.521739130434783
          - type: f1
            value: 5.871393789897329
          - type: precision
            value: 5.350472658912557
          - type: recall
            value: 8.521739130434783
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kaz-eng)
          config: kaz-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 1.565217391304348
          - type: f1
            value: 0.7422394530145001
          - type: precision
            value: 0.7201734373569025
          - type: recall
            value: 1.565217391304348
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (est-eng)
          config: est-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5.3
          - type: f1
            value: 3.0838354401589694
          - type: precision
            value: 2.709942839090994
          - type: recall
            value: 5.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (heb-eng)
          config: heb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 0.8
          - type: f1
            value: 0.24583802742178057
          - type: precision
            value: 0.18710578268453032
          - type: recall
            value: 0.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (gla-eng)
          config: gla-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.945717732207479
          - type: f1
            value: 2.7266734043909437
          - type: precision
            value: 2.3247505400014186
          - type: recall
            value: 4.945717732207479
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mar-eng)
          config: mar-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 54.2
          - type: f1
            value: 47.22780366692132
          - type: precision
            value: 44.740178571428565
          - type: recall
            value: 54.2
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lat-eng)
          config: lat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 25.8
          - type: f1
            value: 19.547406382656526
          - type: precision
            value: 17.80766233766234
          - type: recall
            value: 25.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bel-eng)
          config: bel-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.9
          - type: f1
            value: 3.283031457969928
          - type: precision
            value: 3.0361515007649467
          - type: recall
            value: 4.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pms-eng)
          config: pms-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 22.476190476190478
          - type: f1
            value: 17.494204011570957
          - type: precision
            value: 16.16236240785113
          - type: recall
            value: 22.476190476190478
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (gle-eng)
          config: gle-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.3
          - type: f1
            value: 3.461898170471662
          - type: precision
            value: 2.975546957350575
          - type: recall
            value: 6.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pes-eng)
          config: pes-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.6
          - type: f1
            value: 5.874235156578609
          - type: precision
            value: 5.201352547725499
          - type: recall
            value: 8.6
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nob-eng)
          config: nob-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 15.2
          - type: f1
            value: 11.908986787697534
          - type: precision
            value: 11.090628985937808
          - type: recall
            value: 15.2
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bul-eng)
          config: bul-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.9
          - type: f1
            value: 4.58348360335125
          - type: precision
            value: 4.183620994869927
          - type: recall
            value: 6.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cbk-eng)
          config: cbk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 62.1
          - type: f1
            value: 55.70845598845599
          - type: precision
            value: 53.22281746031747
          - type: recall
            value: 62.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hun-eng)
          config: hun-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.8
          - type: f1
            value: 3.246932234432234
          - type: precision
            value: 2.9738765839703265
          - type: recall
            value: 4.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (uig-eng)
          config: uig-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 0.8999999999999999
          - type: f1
            value: 0.5331481481481481
          - type: precision
            value: 0.4918990604783396
          - type: recall
            value: 0.8999999999999999
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (rus-eng)
          config: rus-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 31.7
          - type: f1
            value: 25.22406237037816
          - type: precision
            value: 23.27273155929038
          - type: recall
            value: 31.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (spa-eng)
          config: spa-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.5
          - type: f1
            value: 95.48333333333333
          - type: precision
            value: 95
          - type: recall
            value: 96.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hye-eng)
          config: hye-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 0.40431266846361186
          - type: f1
            value: 0.22521185350542844
          - type: precision
            value: 0.20245384171411912
          - type: recall
            value: 0.40431266846361186
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tel-eng)
          config: tel-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 43.162393162393165
          - type: f1
            value: 35.83662064431295
          - type: precision
            value: 33.66590199923534
          - type: recall
            value: 43.162393162393165
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (afr-eng)
          config: afr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 12.2
          - type: f1
            value: 9.007009351120605
          - type: precision
            value: 8.26509907921979
          - type: recall
            value: 12.2
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mon-eng)
          config: mon-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 2.0454545454545454
          - type: f1
            value: 0.846869670733307
          - type: precision
            value: 0.719285857023819
          - type: recall
            value: 2.0454545454545454
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (arz-eng)
          config: arz-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 56.18448637316562
          - type: f1
            value: 49.41850369523325
          - type: precision
            value: 46.84486373165618
          - type: recall
            value: 56.18448637316562
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hrv-eng)
          config: hrv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.4
          - type: f1
            value: 6.274306734742452
          - type: precision
            value: 5.854786915151029
          - type: recall
            value: 8.4
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nov-eng)
          config: nov-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 45.13618677042802
          - type: f1
            value: 38.784818726452976
          - type: precision
            value: 36.65848310789945
          - type: recall
            value: 45.13618677042802
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (gsw-eng)
          config: gsw-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 23.076923076923077
          - type: f1
            value: 17.501757501757503
          - type: precision
            value: 16.06289721674337
          - type: recall
            value: 23.076923076923077
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nds-eng)
          config: nds-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 15.8
          - type: f1
            value: 11.834682187321722
          - type: precision
            value: 10.871016304088595
          - type: recall
            value: 15.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ukr-eng)
          config: ukr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 7.3
          - type: f1
            value: 4.929314970921539
          - type: precision
            value: 4.427714750128542
          - type: recall
            value: 7.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (uzb-eng)
          config: uzb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5.14018691588785
          - type: f1
            value: 2.543797914741945
          - type: precision
            value: 2.1476927403586066
          - type: recall
            value: 5.14018691588785
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lit-eng)
          config: lit-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5
          - type: f1
            value: 3.173243817101591
          - type: precision
            value: 2.8643206769285485
          - type: recall
            value: 5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ina-eng)
          config: ina-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 69.5
          - type: f1
            value: 63.89614902641219
          - type: precision
            value: 61.628650793650785
          - type: recall
            value: 69.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lfn-eng)
          config: lfn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 41.8
          - type: f1
            value: 37.523909714712914
          - type: precision
            value: 36.054581750900766
          - type: recall
            value: 41.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (zsm-eng)
          config: zsm-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 79.2
          - type: f1
            value: 74.88805555555554
          - type: precision
            value: 73.05083333333333
          - type: recall
            value: 79.2
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ita-eng)
          config: ita-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 43.5
          - type: f1
            value: 37.28660019590605
          - type: precision
            value: 35.18067447433519
          - type: recall
            value: 43.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cmn-eng)
          config: cmn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.5
          - type: f1
            value: 92.95
          - type: precision
            value: 92.2
          - type: recall
            value: 94.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (lvs-eng)
          config: lvs-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5.2
          - type: f1
            value: 3.5297755651484026
          - type: precision
            value: 3.190013722690584
          - type: recall
            value: 5.2
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (glg-eng)
          config: glg-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 74.7
          - type: f1
            value: 69.2602380952381
          - type: precision
            value: 67.03261904761905
          - type: recall
            value: 74.7
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ceb-eng)
          config: ceb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8
          - type: f1
            value: 5.639611303143687
          - type: precision
            value: 5.209856824277429
          - type: recall
            value: 8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bre-eng)
          config: bre-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.1
          - type: f1
            value: 3.847611167634209
          - type: precision
            value: 3.3324923687423693
          - type: recall
            value: 6.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ben-eng)
          config: ben-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 75.5
          - type: f1
            value: 70.14214285714286
          - type: precision
            value: 67.88761904761904
          - type: recall
            value: 75.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (swg-eng)
          config: swg-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 20.535714285714285
          - type: f1
            value: 16.437074829931973
          - type: precision
            value: 15.459837781266353
          - type: recall
            value: 20.535714285714285
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (arq-eng)
          config: arq-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 21.405049396267835
          - type: f1
            value: 16.162968480476714
          - type: precision
            value: 14.506603642481391
          - type: recall
            value: 21.405049396267835
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kab-eng)
          config: kab-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 1.4000000000000001
          - type: f1
            value: 0.8861559696342305
          - type: precision
            value: 0.7898232323232323
          - type: recall
            value: 1.4000000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fra-eng)
          config: fra-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 93.5
          - type: f1
            value: 91.65333333333334
          - type: precision
            value: 90.80833333333332
          - type: recall
            value: 93.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (por-eng)
          config: por-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 93.8
          - type: f1
            value: 92.08333333333333
          - type: precision
            value: 91.23333333333333
          - type: recall
            value: 93.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tat-eng)
          config: tat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 1.3
          - type: f1
            value: 0.9654912597950575
          - type: precision
            value: 0.911237853823405
          - type: recall
            value: 1.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (oci-eng)
          config: oci-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 35.5
          - type: f1
            value: 29.385868020868024
          - type: precision
            value: 27.38218614718615
          - type: recall
            value: 35.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pol-eng)
          config: pol-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.3
          - type: f1
            value: 5.625495291471218
          - type: precision
            value: 5.006352187769519
          - type: recall
            value: 8.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (war-eng)
          config: war-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 9.3
          - type: f1
            value: 7.188871139201601
          - type: precision
            value: 6.68110313042221
          - type: recall
            value: 9.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (aze-eng)
          config: aze-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.9
          - type: f1
            value: 3.4368196711816386
          - type: precision
            value: 3.1516575755476186
          - type: recall
            value: 4.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (vie-eng)
          config: vie-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.5
          - type: f1
            value: 92.85666666666667
          - type: precision
            value: 92.07499999999999
          - type: recall
            value: 94.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (nno-eng)
          config: nno-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 10.9
          - type: f1
            value: 8.052880589619718
          - type: precision
            value: 7.2833020438680816
          - type: recall
            value: 10.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cha-eng)
          config: cha-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 21.897810218978105
          - type: f1
            value: 16.459096459096457
          - type: precision
            value: 14.99391727493917
          - type: recall
            value: 21.897810218978105
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mhr-eng)
          config: mhr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 0.8
          - type: f1
            value: 0.43900258600589265
          - type: precision
            value: 0.42151473277789064
          - type: recall
            value: 0.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (dan-eng)
          config: dan-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 14.899999999999999
          - type: f1
            value: 11.403181682754628
          - type: precision
            value: 10.506373051667312
          - type: recall
            value: 14.899999999999999
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ell-eng)
          config: ell-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 1.9
          - type: f1
            value: 0.8872641689515834
          - type: precision
            value: 0.7857231069685399
          - type: recall
            value: 1.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (amh-eng)
          config: amh-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 1.1904761904761905
          - type: f1
            value: 0.20847048496818082
          - type: precision
            value: 0.11904761904761904
          - type: recall
            value: 1.1904761904761905
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (pam-eng)
          config: pam-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5.3
          - type: f1
            value: 3.784571880595977
          - type: precision
            value: 3.4556477020719782
          - type: recall
            value: 5.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hsb-eng)
          config: hsb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 9.316770186335404
          - type: f1
            value: 6.80343720685027
          - type: precision
            value: 6.316650292717499
          - type: recall
            value: 9.316770186335404
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (srp-eng)
          config: srp-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5.8999999999999995
          - type: f1
            value: 4.5486926228313695
          - type: precision
            value: 4.311121913612427
          - type: recall
            value: 5.8999999999999995
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (epo-eng)
          config: epo-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 18.099999999999998
          - type: f1
            value: 13.4170874831821
          - type: precision
            value: 12.178193046524806
          - type: recall
            value: 18.099999999999998
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kzj-eng)
          config: kzj-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.3999999999999995
          - type: f1
            value: 3.3905735425765524
          - type: precision
            value: 3.2588935800436625
          - type: recall
            value: 4.3999999999999995
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (awa-eng)
          config: awa-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 37.66233766233766
          - type: f1
            value: 30.539579468150897
          - type: precision
            value: 28.60288100547841
          - type: recall
            value: 37.66233766233766
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fao-eng)
          config: fao-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 12.213740458015266
          - type: f1
            value: 8.297822182308039
          - type: precision
            value: 7.463649581970193
          - type: recall
            value: 12.213740458015266
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mal-eng)
          config: mal-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 78.31149927219796
          - type: f1
            value: 73.35759340126152
          - type: precision
            value: 71.26394953905871
          - type: recall
            value: 78.31149927219796
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ile-eng)
          config: ile-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 51.800000000000004
          - type: f1
            value: 44.24010323010323
          - type: precision
            value: 41.450707972582975
          - type: recall
            value: 51.800000000000004
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (bos-eng)
          config: bos-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 13.27683615819209
          - type: f1
            value: 9.167320569156727
          - type: precision
            value: 8.200402665583079
          - type: recall
            value: 13.27683615819209
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cor-eng)
          config: cor-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.8
          - type: f1
            value: 3.1268763352790283
          - type: precision
            value: 2.84393718699601
          - type: recall
            value: 4.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (cat-eng)
          config: cat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 85.1
          - type: f1
            value: 81.55
          - type: precision
            value: 79.98166666666665
          - type: recall
            value: 85.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (eus-eng)
          config: eus-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 48.3
          - type: f1
            value: 42.347894491129786
          - type: precision
            value: 40.36040404040404
          - type: recall
            value: 48.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (yue-eng)
          config: yue-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 78.8
          - type: f1
            value: 74.35484848484847
          - type: precision
            value: 72.43277777777777
          - type: recall
            value: 78.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (swe-eng)
          config: swe-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 13.900000000000002
          - type: f1
            value: 10.718252991153888
          - type: precision
            value: 9.835761434404196
          - type: recall
            value: 13.900000000000002
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (dtp-eng)
          config: dtp-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.9
          - type: f1
            value: 3.371714825002496
          - type: precision
            value: 3.085928254003479
          - type: recall
            value: 4.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kat-eng)
          config: kat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 0.5361930294906166
          - type: f1
            value: 0.40389703692021933
          - type: precision
            value: 0.40302666854804575
          - type: recall
            value: 0.5361930294906166
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (jpn-eng)
          config: jpn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 55.300000000000004
          - type: f1
            value: 48.83353113553113
          - type: precision
            value: 46.48630659536542
          - type: recall
            value: 55.300000000000004
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (csb-eng)
          config: csb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.300395256916996
          - type: f1
            value: 5.261552988548536
          - type: precision
            value: 4.724388115499655
          - type: recall
            value: 8.300395256916996
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (xho-eng)
          config: xho-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.450704225352112
          - type: f1
            value: 4.829974470478787
          - type: precision
            value: 4.337585798478816
          - type: recall
            value: 8.450704225352112
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (orv-eng)
          config: orv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 1.0778443113772456
          - type: f1
            value: 0.5373251562068135
          - type: precision
            value: 0.5107640721914694
          - type: recall
            value: 1.0778443113772456
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ind-eng)
          config: ind-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88.5
          - type: f1
            value: 85.46333333333334
          - type: precision
            value: 84.1
          - type: recall
            value: 88.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tuk-eng)
          config: tuk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5.41871921182266
          - type: f1
            value: 2.8063639248802965
          - type: precision
            value: 2.2699550039451513
          - type: recall
            value: 5.41871921182266
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (max-eng)
          config: max-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 40.49295774647887
          - type: f1
            value: 33.455454951933824
          - type: precision
            value: 31.4339393461183
          - type: recall
            value: 40.49295774647887
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (swh-eng)
          config: swh-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 18.974358974358974
          - type: f1
            value: 14.517578026097205
          - type: precision
            value: 13.3510327465177
          - type: recall
            value: 18.974358974358974
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (hin-eng)
          config: hin-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88.5
          - type: f1
            value: 85.34666666666666
          - type: precision
            value: 83.89999999999999
          - type: recall
            value: 88.5
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (dsb-eng)
          config: dsb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.1419624217119
          - type: f1
            value: 5.830783012763732
          - type: precision
            value: 5.4408714223116545
          - type: recall
            value: 8.1419624217119
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ber-eng)
          config: ber-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5.800000000000001
          - type: f1
            value: 3.9245687335866406
          - type: precision
            value: 3.5535667824951584
          - type: recall
            value: 5.800000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tam-eng)
          config: tam-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 68.40390879478826
          - type: f1
            value: 62.25738069386277
          - type: precision
            value: 60.10935318752908
          - type: recall
            value: 68.40390879478826
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (slk-eng)
          config: slk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 7.1
          - type: f1
            value: 5.4876787833762135
          - type: precision
            value: 5.126663482701374
          - type: recall
            value: 7.1
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tgl-eng)
          config: tgl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.9
          - type: f1
            value: 6.519531004112515
          - type: precision
            value: 5.987707404636394
          - type: recall
            value: 8.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ast-eng)
          config: ast-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 66.92913385826772
          - type: f1
            value: 59.96062992125984
          - type: precision
            value: 57.13348331458567
          - type: recall
            value: 66.92913385826772
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (mkd-eng)
          config: mkd-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.3
          - type: f1
            value: 2.765805343607201
          - type: precision
            value: 2.5247851243177144
          - type: recall
            value: 4.3
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (khm-eng)
          config: khm-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 0.41551246537396125
          - type: f1
            value: 0.1497838495760933
          - type: precision
            value: 0.14429034844729552
          - type: recall
            value: 0.41551246537396125
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ces-eng)
          config: ces-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 5.800000000000001
          - type: f1
            value: 3.761224995516873
          - type: precision
            value: 3.2689210175496086
          - type: recall
            value: 5.800000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tzl-eng)
          config: tzl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 16.346153846153847
          - type: f1
            value: 14.524291497975709
          - type: precision
            value: 13.995726495726496
          - type: recall
            value: 16.346153846153847
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (urd-eng)
          config: urd-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 67.80000000000001
          - type: f1
            value: 61.615800865800864
          - type: precision
            value: 59.12333333333334
          - type: recall
            value: 67.80000000000001
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (ara-eng)
          config: ara-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 83.8
          - type: f1
            value: 80.08857142857143
          - type: precision
            value: 78.46666666666667
          - type: recall
            value: 83.8
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (kor-eng)
          config: kor-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.2
          - type: f1
            value: 2.6507751588440254
          - type: precision
            value: 2.335273168189835
          - type: recall
            value: 4.2
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (yid-eng)
          config: yid-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 0.4716981132075472
          - type: f1
            value: 0.19293763102725367
          - type: precision
            value: 0.1622040325564188
          - type: recall
            value: 0.4716981132075472
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (fin-eng)
          config: fin-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 4.9
          - type: f1
            value: 3.5001791555125235
          - type: precision
            value: 3.277940522301425
          - type: recall
            value: 4.9
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (tha-eng)
          config: tha-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 0.9124087591240875
          - type: f1
            value: 0.5083420229405631
          - type: precision
            value: 0.4674562188049969
          - type: recall
            value: 0.9124087591240875
      - task:
          type: BitextMining
        dataset:
          type: mteb/tatoeba-bitext-mining
          name: MTEB Tatoeba (wuu-eng)
          config: wuu-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 79.4
          - type: f1
            value: 74.62333333333333
          - type: precision
            value: 72.52333333333334
          - type: recall
            value: 79.4
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 51.02719281751054
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 48.31885339280247
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.426
          - type: map_at_10
            value: 9.029
          - type: map_at_100
            value: 14.299999999999999
          - type: map_at_1000
            value: 15.798000000000002
          - type: map_at_3
            value: 4.626
          - type: map_at_5
            value: 6.221
          - type: mrr_at_1
            value: 32.653
          - type: mrr_at_10
            value: 46.608
          - type: mrr_at_100
            value: 47.195
          - type: mrr_at_1000
            value: 47.208
          - type: mrr_at_3
            value: 41.837
          - type: mrr_at_5
            value: 43.673
          - type: ndcg_at_1
            value: 29.592000000000002
          - type: ndcg_at_10
            value: 23.354
          - type: ndcg_at_100
            value: 33.875
          - type: ndcg_at_1000
            value: 45.369
          - type: ndcg_at_3
            value: 25.734
          - type: ndcg_at_5
            value: 23.873
          - type: precision_at_1
            value: 32.653
          - type: precision_at_10
            value: 21.224
          - type: precision_at_100
            value: 7.122000000000001
          - type: precision_at_1000
            value: 1.459
          - type: precision_at_3
            value: 26.531
          - type: precision_at_5
            value: 24.082
          - type: recall_at_1
            value: 2.426
          - type: recall_at_10
            value: 15.622
          - type: recall_at_100
            value: 44.318999999999996
          - type: recall_at_1000
            value: 78.632
          - type: recall_at_3
            value: 5.798
          - type: recall_at_5
            value: 8.927
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 67.9606
          - type: ap
            value: 12.665547829558923
          - type: f1
            value: 52.10043478110198
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 59.601018675721576
          - type: f1
            value: 59.91486569196274
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 37.881729581540135
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 83.68003814746379
          - type: cos_sim_ap
            value: 65.95659315362258
          - type: cos_sim_f1
            value: 61.94669484560291
          - type: cos_sim_precision
            value: 55.80706579225725
          - type: cos_sim_recall
            value: 69.6042216358839
          - type: dot_accuracy
            value: 81.97532335936103
          - type: dot_ap
            value: 58.99091918849294
          - type: dot_f1
            value: 57.098765432098766
          - type: dot_precision
            value: 51.8990073370738
          - type: dot_recall
            value: 63.45646437994723
          - type: euclidean_accuracy
            value: 83.18531322644095
          - type: euclidean_ap
            value: 64.5631762106556
          - type: euclidean_f1
            value: 61.150808574652125
          - type: euclidean_precision
            value: 58.25173155003582
          - type: euclidean_recall
            value: 64.35356200527704
          - type: manhattan_accuracy
            value: 83.14358943792097
          - type: manhattan_ap
            value: 64.73090464118813
          - type: manhattan_f1
            value: 61.228384019081695
          - type: manhattan_precision
            value: 55.86507072905332
          - type: manhattan_recall
            value: 67.73087071240106
          - type: max_accuracy
            value: 83.68003814746379
          - type: max_ap
            value: 65.95659315362258
          - type: max_f1
            value: 61.94669484560291
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.7161873714441
          - type: cos_sim_ap
            value: 85.10870963707444
          - type: cos_sim_f1
            value: 77.88396923766146
          - type: cos_sim_precision
            value: 75.59791274097695
          - type: cos_sim_recall
            value: 80.31259624268556
          - type: dot_accuracy
            value: 87.74595412737222
          - type: dot_ap
            value: 81.22910623983562
          - type: dot_f1
            value: 76.08511889448344
          - type: dot_precision
            value: 72.78672385908163
          - type: dot_recall
            value: 79.69664305512781
          - type: euclidean_accuracy
            value: 88.13404742500097
          - type: euclidean_ap
            value: 84.03032098854915
          - type: euclidean_f1
            value: 76.3909440662918
          - type: euclidean_precision
            value: 73.51894047279977
          - type: euclidean_recall
            value: 79.49645826917154
          - type: manhattan_accuracy
            value: 88.13598789148911
          - type: manhattan_ap
            value: 84.13258714083858
          - type: manhattan_f1
            value: 76.44922164566346
          - type: manhattan_precision
            value: 73.70640365923384
          - type: manhattan_recall
            value: 79.40406529103788
          - type: max_accuracy
            value: 88.7161873714441
          - type: max_ap
            value: 85.10870963707444
          - type: max_f1
            value: 77.88396923766146
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 41.8
          - type: map_at_10
            value: 50.57000000000001
          - type: map_at_100
            value: 51.271
          - type: map_at_1000
            value: 51.31099999999999
          - type: map_at_3
            value: 48.283
          - type: map_at_5
            value: 49.633
          - type: mrr_at_1
            value: 41.8
          - type: mrr_at_10
            value: 50.57000000000001
          - type: mrr_at_100
            value: 51.271
          - type: mrr_at_1000
            value: 51.31099999999999
          - type: mrr_at_3
            value: 48.283
          - type: mrr_at_5
            value: 49.633
          - type: ndcg_at_1
            value: 41.8
          - type: ndcg_at_10
            value: 55.071999999999996
          - type: ndcg_at_100
            value: 58.604
          - type: ndcg_at_1000
            value: 59.679
          - type: ndcg_at_3
            value: 50.394000000000005
          - type: ndcg_at_5
            value: 52.825
          - type: precision_at_1
            value: 41.8
          - type: precision_at_10
            value: 6.93
          - type: precision_at_100
            value: 0.861
          - type: precision_at_1000
            value: 0.095
          - type: precision_at_3
            value: 18.833
          - type: precision_at_5
            value: 12.479999999999999
          - type: recall_at_1
            value: 41.8
          - type: recall_at_10
            value: 69.3
          - type: recall_at_100
            value: 86.1
          - type: recall_at_1000
            value: 94.6
          - type: recall_at_3
            value: 56.49999999999999
          - type: recall_at_5
            value: 62.4
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 80.65
          - type: ap
            value: 59.927241826012924
          - type: f1
            value: 78.72456184299979

Model Card for udever-bloom

udever-bloom-560m is finetuned from bigscience/bloom-560m via BitFit on MS MARCO Passage Ranking, SNLI and MultiNLI data. It is a universal embedding model across tasks, natural and programming languages. (From the technical view, udever is merely with some minor improvements to sgpt-bloom)

Model Details

Model Description

Model Sources

Checkpoints

On ModelScope / 魔搭社区: udever-bloom-560m, udever-bloom-1b1, udever-bloom-3b, udever-bloom-7b1

How to Get Started with the Model

Use the code below to get started with the model.

import torch
from transformers import AutoTokenizer, BloomModel

tokenizer = AutoTokenizer.from_pretrained('izhx/udever-bloom-560m')
model = BloomModel.from_pretrained('izhx/udever-bloom-560m')

boq, eoq, bod, eod = '[BOQ]', '[EOQ]', '[BOD]', '[EOD]'
eoq_id, eod_id = tokenizer.convert_tokens_to_ids([eoq, eod])

if tokenizer.padding_side != 'left':
    print('!!!', tokenizer.padding_side)
    tokenizer.padding_side = 'left'


def encode(texts: list, is_query: bool = True, max_length=300):
    bos = boq if is_query else bod
    eos_id = eoq_id if is_query else eod_id
    texts = [bos + t for t in texts]
    encoding = tokenizer(
        texts, truncation=True, max_length=max_length - 1, padding=True
    )
    for ids, mask in zip(encoding['input_ids'], encoding['attention_mask']):
        ids.append(eos_id)
        mask.append(1)
    inputs = tokenizer.pad(encoding, return_tensors='pt')
    with torch.inference_mode():
        outputs = model(**inputs)
        embeds = outputs.last_hidden_state[:, -1]
    return embeds

encode(['I am Bert', 'You are Elmo'])

Training Details

Training Data

Training Procedure

Preprocessing

MS MARCO hard negatives provided by (https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/ms_marco/train_bi-encoder_mnrl.py#L86). Negatives for SNLI and MultiNLI are randomly sampled.

Training Hyperparameters

  • Training regime: tf32, BitFit
  • Batch size: 1024
  • Epochs: 3
  • Optimizer: AdamW
  • Learning rate: 1e-4
  • Scheduler: constant with warmup.
  • Warmup: 0.25 epoch

Evaluation

Table 1: Massive Text Embedding Benchmark MTEB

MTEB Avg. Class. Clust. PairClass. Rerank. Retr. STS Summ.
#Datasets ➡️ 56 12 11 3 4 15 10 1
bge-large-en-v1.5 64.23 75.97 46.08 87.12 60.03 54.29 83.11 31.61
bge-base-en-v1.5 63.55 75.53 45.77 86.55 58.86 53.25 82.4 31.07
gte-large 63.13 73.33 46.84 85 59.13 52.22 83.35 31.66
gte-base 62.39 73.01 46.2 84.57 58.61 51.14 82.3 31.17
e5-large-v2 62.25 75.24 44.49 86.03 56.61 50.56 82.05 30.19
instructor-xl 61.79 73.12 44.74 86.62 57.29 49.26 83.06 32.32
instructor-large 61.59 73.86 45.29 85.89 57.54 47.57 83.15 31.84
e5-base-v2 61.5 73.84 43.8 85.73 55.91 50.29 81.05 30.28
e5-large 61.42 73.14 43.33 85.94 56.53 49.99 82.06 30.97
text-embedding-ada-002 (OpenAI API) 60.99 70.93 45.9 84.89 56.32 49.25 80.97 30.8
e5-base 60.44 72.63 42.11 85.09 55.7 48.75 80.96 31.01
SGPT-5.8B-msmarco 58.93 68.13 40.34 82 56.56 50.25 78.1 31.46
sgpt-bloom-7b1-msmarco 57.59 66.19 38.93 81.9 55.65 48.22 77.74 33.6
Udever-bloom-560m 55.80 68.04 36.89 81.05 52.60 41.19 79.93 32.06
Udever-bloom-1b1 58.28 70.18 39.11 83.11 54.28 45.27 81.52 31.10
Udever-bloom-3b 59.86 71.91 40.74 84.06 54.90 47.67 82.37 30.62
Udever-bloom-7b1 60.63 72.13 40.81 85.40 55.91 49.34 83.01 30.97

Table 2: CodeSearchNet

CodeSearchNet Go Ruby Python Java JS PHP Avg.
CodeBERT 69.3 70.6 84.0 86.8 74.8 70.6 76.0
GraphCodeBERT 84.1 73.2 87.9 75.7 71.1 72.5 77.4
cpt-code S 97.7 86.3 99.8 94.0 86.0 96.7 93.4
cpt-code M 97.5 85.5 99.9 94.4 86.5 97.2 93.5
sgpt-bloom-7b1-msmarco 76.79 69.25 95.68 77.93 70.35 73.45 77.24
Udever-bloom-560m 75.38 66.67 96.23 78.99 69.39 73.69 76.73
Udever-bloom-1b1 78.76 72.85 97.67 82.77 74.38 78.97 80.90
Udever-bloom-3b 80.63 75.40 98.02 83.88 76.18 79.67 82.29
Udever-bloom-7b1 79.37 76.59 98.38 84.68 77.49 80.03 82.76

Table 3: Chinese multi-domain retrieval Multi-cpr

E-commerce Entertainment video Medical
Model Train Backbone MRR@10 Recall@1k MRR@10 Recall@1k MRR@10 Recall@1k
BM25 - - 0.225 0.815 0.225 0.780 0.187 0.482
Doc2Query - - 0.239 0.826 0.238 0.794 0.210 0.505
DPR-1 In-Domain BERT 0.270 0.921 0.254 0.934 0.327 0.747
DPR-2 In-Domain BERT-CT 0.289 0.926 0.263 0.935 0.339 0.769
text-embedding-ada-002 General GPT 0.183 0.825 0.159 0.786 0.245 0.593
sgpt-bloom-7b1-msmarco General BLOOM 0.242 0.840 0.227 0.829 0.311 0.675
Udever-bloom-560m General BLOOM 0.156 0.802 0.149 0.749 0.245 0.571
Udever-bloom-1b1 General BLOOM 0.244 0.863 0.208 0.815 0.241 0.557
Udever-bloom-3b General BLOOM 0.267 0.871 0.228 0.836 0.288 0.619
Udever-bloom-7b1 General BLOOM 0.296 0.889 0.267 0.907 0.343 0.705

More results refer to paper section 3.

Technical Specifications

Model Architecture and Objective

Compute Infrastructure

  • Nvidia A100 SXM4 80GB.
  • torch 2.0.0, transformers 4.29.2.

Citation

BibTeX:

@article{zhang2023language,
  title={Language Models are Universal Embedders},
  author={Zhang, Xin and Li, Zehan and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan and Zhang, Min},
  journal={arXiv preprint arXiv:2310.08232},
  year={2023}
}