Edit model card

robbert-2023-dutch-large-topic_classification

This model is a fine-tuned version of DTAI-KULeuven/robbert-2023-dutch-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7479
  • Precision: 0.9198
  • Recall: 0.9008
  • F1: 0.9082
  • Accuracy: 0.9118

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 88 0.7486 0.8471 0.8101 0.8223 0.8333
No log 2.0 176 0.7488 0.8557 0.7525 0.7800 0.8137
No log 3.0 264 0.9650 0.8507 0.8430 0.8347 0.8284
No log 4.0 352 0.7878 0.8982 0.8472 0.8650 0.8775
No log 5.0 440 0.8113 0.9254 0.8876 0.9020 0.9020
0.5488 6.0 528 0.8695 0.9070 0.8858 0.8936 0.8971
0.5488 7.0 616 0.7924 0.9174 0.8886 0.8983 0.9020
0.5488 8.0 704 0.6974 0.9198 0.9008 0.9082 0.9118
0.5488 9.0 792 0.7410 0.9292 0.9065 0.9148 0.9167
0.5488 10.0 880 0.7479 0.9198 0.9008 0.9082 0.9118

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for izaitova/robbert-2023-dutch-large-topic_classification

Finetuned
(5)
this model