Edit model card

Data_extraction

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4277
  • Fsc Code: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22}
  • Ame: {'precision': 0.391304347826087, 'recall': 0.42857142857142855, 'f1': 0.4090909090909091, 'number': 42}
  • Ccount No: {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6}
  • Ign: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5}
  • Mount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13}
  • Ther: {'precision': 0.5287356321839081, 'recall': 0.5348837209302325, 'f1': 0.5317919075144507, 'number': 86}
  • Overall Precision: 0.6045
  • Overall Recall: 0.6149
  • Overall F1: 0.6097
  • Overall Accuracy: 0.9431

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Fsc Code Ame Ccount No Ign Mount Ther Overall Precision Overall Recall Overall F1 Overall Accuracy
0.1559 20.0 200 0.2349 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} {'precision': 0.3448275862068966, 'recall': 0.47619047619047616, 'f1': 0.39999999999999997, 'number': 42} {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} {'precision': 0.4329896907216495, 'recall': 0.4883720930232558, 'f1': 0.45901639344262296, 'number': 86} 0.5155 0.5747 0.5435 0.9376
0.0138 40.0 400 0.2607 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} {'precision': 0.3148148148148148, 'recall': 0.40476190476190477, 'f1': 0.3541666666666667, 'number': 42} {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} {'precision': 1.0, 'recall': 0.8, 'f1': 0.888888888888889, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} {'precision': 0.5, 'recall': 0.5465116279069767, 'f1': 0.5222222222222221, 'number': 86} 0.5550 0.6092 0.5808 0.9372
0.0031 60.0 600 0.3808 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} {'precision': 0.2786885245901639, 'recall': 0.40476190476190477, 'f1': 0.33009708737864074, 'number': 42} {'precision': 1.0, 'recall': 0.6666666666666666, 'f1': 0.8, 'number': 6} {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} {'precision': 0.4077669902912621, 'recall': 0.4883720930232558, 'f1': 0.44444444444444436, 'number': 86} 0.4928 0.5920 0.5379 0.9372
0.0031 80.0 800 0.3239 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} {'precision': 0.2807017543859649, 'recall': 0.38095238095238093, 'f1': 0.32323232323232326, 'number': 42} {'precision': 1.0, 'recall': 0.8333333333333334, 'f1': 0.9090909090909091, 'number': 6} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} {'precision': 0.45, 'recall': 0.5232558139534884, 'f1': 0.48387096774193555, 'number': 86} 0.5248 0.6092 0.5638 0.9532
0.0007 100.0 1000 0.3718 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} {'precision': 0.375, 'recall': 0.42857142857142855, 'f1': 0.39999999999999997, 'number': 42} {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 6} {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} {'precision': 0.4891304347826087, 'recall': 0.5232558139534884, 'f1': 0.5056179775280899, 'number': 86} 0.5722 0.6149 0.5928 0.9467
0.0002 120.0 1200 0.4208 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} {'precision': 0.34, 'recall': 0.40476190476190477, 'f1': 0.36956521739130443, 'number': 42} {'precision': 0.5, 'recall': 0.5, 'f1': 0.5, 'number': 6} {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} {'precision': 0.4731182795698925, 'recall': 0.5116279069767442, 'f1': 0.4916201117318436, 'number': 86} 0.5474 0.5977 0.5714 0.9408
0.0003 140.0 1400 0.4155 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} {'precision': 0.3333333333333333, 'recall': 0.40476190476190477, 'f1': 0.3655913978494623, 'number': 42} {'precision': 0.8, 'recall': 0.6666666666666666, 'f1': 0.7272727272727272, 'number': 6} {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} {'precision': 0.46808510638297873, 'recall': 0.5116279069767442, 'f1': 0.4888888888888889, 'number': 86} 0.5497 0.6034 0.5753 0.9397
0.0004 160.0 1600 0.4277 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} {'precision': 0.391304347826087, 'recall': 0.42857142857142855, 'f1': 0.4090909090909091, 'number': 42} {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} {'precision': 0.5287356321839081, 'recall': 0.5348837209302325, 'f1': 0.5317919075144507, 'number': 86} 0.6045 0.6149 0.6097 0.9431
0.0001 180.0 1800 0.3870 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} {'precision': 0.27586206896551724, 'recall': 0.38095238095238093, 'f1': 0.32, 'number': 42} {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} {'precision': 0.45, 'recall': 0.5232558139534884, 'f1': 0.48387096774193555, 'number': 86} 0.5149 0.5977 0.5532 0.9476
0.0001 200.0 2000 0.3956 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} {'precision': 0.3617021276595745, 'recall': 0.40476190476190477, 'f1': 0.3820224719101123, 'number': 42} {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} {'precision': 0.5056179775280899, 'recall': 0.5232558139534884, 'f1': 0.5142857142857142, 'number': 86} 0.5833 0.6034 0.5932 0.9526
0.0001 220.0 2200 0.4029 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} {'precision': 0.3469387755102041, 'recall': 0.40476190476190477, 'f1': 0.3736263736263736, 'number': 42} {'precision': 0.6, 'recall': 0.5, 'f1': 0.5454545454545454, 'number': 6} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} {'precision': 0.5, 'recall': 0.5348837209302325, 'f1': 0.5168539325842696, 'number': 86} 0.5699 0.6092 0.5889 0.9508
0.0 240.0 2400 0.4031 {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 22} {'precision': 0.34, 'recall': 0.40476190476190477, 'f1': 0.36956521739130443, 'number': 42} {'precision': 0.75, 'recall': 0.5, 'f1': 0.6, 'number': 6} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 5} {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 13} {'precision': 0.4891304347826087, 'recall': 0.5232558139534884, 'f1': 0.5056179775280899, 'number': 86} 0.5645 0.6034 0.5833 0.9499

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
130M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for indudesane/Data_extraction

Finetuned
(44)
this model