Edit model card

wav2vec2-xls-r-300m-lm-hebrew

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset with adding ngram models according to Boosting Wav2Vec2 with n-grams in 🤗 Transformers

Usage

check package: https://github.com/imvladikon/wav2vec2-hebrew

or use transformers pipeline:

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F


model_id = "imvladikon/wav2vec2-xls-r-300m-lm-hebrew"

sample_iter = iter(load_dataset("google/fleurs", "he_il", split="test", streaming=True))

sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), sample["audio"]["sampling_rate"], 16_000).numpy()

model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)

input_values = processor(resampled_audio, return_tensors="pt").input_values

with torch.no_grad():
    logits = model(input_values).logits

transcription = processor.batch_decode(logits.numpy()).text
print(transcription)

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0
Downloads last month
24
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for imvladikon/wav2vec2-xls-r-300m-lm-hebrew

Finetuned
(455)
this model

Datasets used to train imvladikon/wav2vec2-xls-r-300m-lm-hebrew