File size: 2,643 Bytes
fcf6191 6849df4 a7490ff 6849df4 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 8477b23 a7490ff 6849df4 a7490ff 6849df4 8477b23 6849df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
license: mit
tags:
- tabular-classification
- sklearn
- imodels
datasets:
- imodels/compas-recidivism
widget:
structuredData:
age:
- 40.0
- 25.0
- 36.0
- 23.0
- 29.0
priors_count:
- 0.0
- 1.0
- 11.0
- 1.0
- 0.0
days_b_screening_arrest:
- -1.0
- -1.0
- -1.0
- -1.0
- 0.0
c_jail_time:
- 0.0
- 1.0
- 2.0
- 0.0
- -1.0
juv_fel_count:
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
juv_other_count:
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
juv_misd_count:
- 0.0
- 0.0
- 0.0
- 1.0
- 0.0
c_charge_degree:F:
- 0.0
- 1.0
- 0.0
- 0.0
- 0.0
c_charge_degree:M:
- 1.0
- 0.0
- 1.0
- 1.0
- 1.0
race:African-American:
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
race:Asian:
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
race:Caucasian:
- 1.0
- 0.0
- 1.0
- 1.0
- 1.0
race:Hispanic:
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
race:Native_American:
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
race:Other:
- 0.0
- 1.0
- 0.0
- 0.0
- 0.0
age_cat:25_-_45:
- 1.0
- 1.0
- 1.0
- 0.0
- 1.0
age_cat:Greater_than_45:
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
age_cat:Less_than_25:
- 0.0
- 0.0
- 0.0
- 1.0
- 0.0
sex:Female:
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
sex:Male:
- 1.0
- 1.0
- 1.0
- 1.0
- 1.0
---
### Load the data
```python
from datasets import load_dataset
import imodels
import numpy as np
from sklearn.model_selection import GridSearchCV
import joblib
dataset = load_dataset("imodels/compas-recidivism")
df = pd.DataFrame(dataset['train'])
X_train = df.drop(columns=['is_recid'])
y_train = df['is_recid'].values
df_test = pd.DataFrame(dataset['test'])
X_test = df.drop(columns=['is_recid'])
y_test = df['is_recid'].values
```
### Load the model
```python
from huggingface_hub import hf_hub_url, cached_download
import joblib
import pandas as pd
REPO_ID = "imodels/figs-compas-recidivism"
FILENAME = "sklearn_model.joblib"
model = joblib.load(cached_download(
hf_hub_url(REPO_ID, FILENAME)
))
# model is a `imodels.FIGSClassifier`
```
### Make prediction
```
preds = model.predict(X_test)
print('accuracy', np.mean(preds==y_test))
# accuracy 0.6759165485112416
```
|