Chandan Singh
commited on
Commit
•
6849df4
1
Parent(s):
132dd26
update readme
Browse files
README.md
CHANGED
@@ -1,3 +1,64 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
---
|
4 |
+
|
5 |
+
---
|
6 |
+
tags:
|
7 |
+
- tabular-classification
|
8 |
+
- sklearn
|
9 |
+
datasets:
|
10 |
+
- wine-quality
|
11 |
+
- imodels/compas-recidivism
|
12 |
+
---
|
13 |
+
|
14 |
+
|
15 |
+
### Load the data
|
16 |
+
|
17 |
+
```python
|
18 |
+
from datasets import load_dataset
|
19 |
+
import imodels
|
20 |
+
import numpy as np
|
21 |
+
from sklearn.model_selection import GridSearchCV
|
22 |
+
import joblib
|
23 |
+
|
24 |
+
dataset = load_dataset("imodels/compas-recidivism")
|
25 |
+
df = pd.DataFrame(dataset['train'])
|
26 |
+
X_train = df.drop(columns=['is_recid'])
|
27 |
+
y_train = df['is_recid'].values
|
28 |
+
|
29 |
+
df_test = pd.DataFrame(dataset['test'])
|
30 |
+
X_test = df.drop(columns=['is_recid'])
|
31 |
+
y_test = df['is_recid'].values
|
32 |
+
```
|
33 |
+
|
34 |
+
### Load the model
|
35 |
+
## Wine Quality classification
|
36 |
+
|
37 |
+
### A Simple Example of Scikit-learn Pipeline
|
38 |
+
|
39 |
+
> Inspired by https://towardsdatascience.com/a-simple-example-of-pipeline-in-machine-learning-with-scikit-learn-e726ffbb6976 by Saptashwa Bhattacharyya
|
40 |
+
|
41 |
+
|
42 |
+
### Load the model
|
43 |
+
|
44 |
+
```python
|
45 |
+
from huggingface_hub import hf_hub_url, cached_download
|
46 |
+
import joblib
|
47 |
+
import pandas as pd
|
48 |
+
|
49 |
+
REPO_ID = "imodels/figs-compas-recidivism"
|
50 |
+
FILENAME = "figs_model.joblib"
|
51 |
+
|
52 |
+
model = joblib.load(cached_download(
|
53 |
+
hf_hub_url(REPO_ID, FILENAME)
|
54 |
+
))
|
55 |
+
|
56 |
+
# model is a `imodels.FIGSClassifier`
|
57 |
+
```
|
58 |
+
|
59 |
+
### Make prediction
|
60 |
+
|
61 |
+
```
|
62 |
+
preds = model.predict(X_test)
|
63 |
+
print('accuracy', np.mean(preds==y_test))
|
64 |
+
```
|