Edit model card

rubert-base-cased-token

This model is a fine-tuned version of DeepPavlov/rubert-base-cased on the OpenCorpora dataset opencorpora.org. It achieves the following results on the evaluation set:

  • Loss: 0.2595
  • Precision: 0.9304
  • Recall: 0.9334
  • F1: 0.9319
  • Accuracy: 0.9424

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

Tokens classification from OpenCorpora: opencorpora.org

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 69 0.6926 0.7731 0.7674 0.7702 0.8200
No log 2.0 138 0.3744 0.8665 0.8807 0.8735 0.9003
No log 3.0 207 0.2891 0.9004 0.9071 0.9037 0.9231
No log 4.0 276 0.2566 0.9123 0.9217 0.9170 0.9327
No log 5.0 345 0.2587 0.9211 0.9255 0.9233 0.9366
No log 6.0 414 0.2472 0.9264 0.9289 0.9276 0.9401
No log 7.0 483 0.2589 0.9267 0.9313 0.9290 0.9406
0.3825 8.0 552 0.2559 0.9286 0.9334 0.9310 0.9416
0.3825 9.0 621 0.2578 0.9304 0.9339 0.9321 0.9425
0.3825 10.0 690 0.2595 0.9304 0.9334 0.9319 0.9424

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
24
Safetensors
Model size
177M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for igorktech/rubert-base-morph-tagging

Finetuned
(33)
this model