metadata
base_model:
- ielabgroup/bert-base-uncased-fineweb100bt-smae
datasets:
- sentence-transformers/all-nli
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:StarbucksLoss
widget:
- source_sentence: A dog is in the water.
sentences:
- The woman is wearing green.
- The dog is rolling around in the grass.
- >-
A brown dog swims through water outdoors with a tennis ball in its
mouth.
- source_sentence: A dog is swimming.
sentences:
- a black dog swimming in the water with a tennis ball in his mouth
- A dog with yellow fur swims, neck deep, in water.
- A brown dog running through a large orange tube.
- source_sentence: A dog is swimming.
sentences:
- A dog with golden hair swims through water.
- A golden haired dog is lying in a boat that is traveling on a lake.
- A dog with golden hair swims through water.
- source_sentence: A dog is swimming.
sentences:
- A tan dog splashes as he swims through the water.
- A man and young boy asleep in a chair.
- A dog in a harness chasing a red ball.
- source_sentence: A dog is in the water.
sentences:
- A big brown dog jumps into a swimming pool on the backyard.
- Wet brown dog swims towards camera.
- The dog is rolling around in the grass.
model-index:
- name: >-
SentenceTransformer based on
ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8170317205826663
name: Pearson Cosine
- type: spearman_cosine
value: 0.827406310000667
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8085162876731988
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8050045835065848
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8122787407180172
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.809299222491485
name: Spearman Euclidean
- type: pearson_dot
value: 0.7657571947414553
name: Pearson Dot
- type: spearman_dot
value: 0.7564706925314776
name: Spearman Dot
- type: pearson_max
value: 0.8170317205826663
name: Pearson Max
- type: spearman_max
value: 0.827406310000667
name: Spearman Max
SentenceTransformer based on ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae
This is a sentence-transformers model finetuned from ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ielabgroup/Starbucks_STS")
# Run inference
sentences = [
'A dog is in the water.',
'Wet brown dog swims towards camera.',
'The dog is rolling around in the grass.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.817 |
spearman_cosine | 0.8274 |
pearson_manhattan | 0.8085 |
spearman_manhattan | 0.805 |
pearson_euclidean | 0.8123 |
spearman_euclidean | 0.8093 |
pearson_dot | 0.7658 |
spearman_dot | 0.7565 |
pearson_max | 0.817 |
spearman_max | 0.8274 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
starbucks_loss.StarbucksLoss
with these parameters:{ "loss": "MatryoshkaLoss", "n_selections_per_step": -1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_layers": [ 1, 3, 5, 7, 9, 11 ], "matryoshka_dims": [ 32, 64, 128, 256, 512, 768 ] }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 128per_device_eval_batch_size
: 128num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truegradient_checkpointing
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | sts-test_spearman_cosine |
---|---|---|---|
0.0229 | 100 | 16.7727 | - |
0.0459 | 200 | 9.653 | - |
0.0688 | 300 | 8.3187 | - |
0.0918 | 400 | 7.748 | - |
0.1147 | 500 | 7.2587 | - |
0.1376 | 600 | 6.734 | - |
0.1606 | 700 | 6.4463 | - |
0.1835 | 800 | 6.299 | - |
0.2065 | 900 | 5.9946 | - |
0.2294 | 1000 | 5.9348 | - |
0.2524 | 1100 | 5.7723 | - |
0.2753 | 1200 | 5.5822 | - |
0.2982 | 1300 | 5.4233 | - |
0.3212 | 1400 | 5.3427 | - |
0.3441 | 1500 | 5.3132 | - |
0.3671 | 1600 | 5.3149 | - |
0.3900 | 1700 | 5.3007 | - |
0.4129 | 1800 | 4.9539 | - |
0.4359 | 1900 | 4.9308 | - |
0.4588 | 2000 | 4.8171 | - |
0.4818 | 2100 | 5.0181 | - |
0.5047 | 2200 | 4.9631 | - |
0.5276 | 2300 | 4.8125 | - |
0.5506 | 2400 | 4.7133 | - |
0.5735 | 2500 | 4.5809 | - |
0.5965 | 2600 | 4.6093 | - |
0.6194 | 2700 | 4.6723 | - |
0.6423 | 2800 | 4.5526 | - |
0.6653 | 2900 | 4.4967 | - |
0.6882 | 3000 | 4.4178 | - |
0.7112 | 3100 | 4.4333 | - |
0.7341 | 3200 | 4.3289 | - |
0.7571 | 3300 | 4.5199 | - |
0.7800 | 3400 | 4.3389 | - |
0.8029 | 3500 | 4.3394 | - |
0.8259 | 3600 | 4.2423 | - |
0.8488 | 3700 | 4.3219 | - |
0.8718 | 3800 | 4.3297 | - |
0.8947 | 3900 | 4.3132 | - |
0.9176 | 4000 | 4.2616 | - |
0.9406 | 4100 | 4.2233 | - |
0.9635 | 4200 | 4.1912 | - |
0.9865 | 4300 | 4.1838 | - |
1.0 | 4359 | - | 0.8274 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}