κ΅μ‘μ©μΌλ‘ νμ΅ ν κ°λ¨ν instruction fine-tuning λͺ¨λΈ (updated 2023/08/06)
- Pretrained model: skt/kogpt2-base-v2 (https://github.com/SKT-AI/KoGPT2)
- Training data: kullm-v2(https://huggingface.co/datasets/nlpai-lab/kullm-v2)
from transformers import AutoModelForCausalLM
from transformers import PreTrainedTokenizerFast
tokenizer = PreTrainedTokenizerFast.from_pretrained("hyunjae/skt-kogpt2-kullm-v2",
bos_token='</s>', eos_token='</s>', unk_token='<unk>',
pad_token='<pad>', mask_token='<mask>', padding_side="right", model_max_length=512)
model = AutoModelForCausalLM.from_pretrained('hyunjae/skt-kogpt2-kullm-v2').to('cuda')
PROMPT= "### system:μ¬μ©μμ μ§λ¬Έμ λ§λ μ μ ν μλ΅μ μμ±νμΈμ.\n### μ¬μ©μ:{instruction}\n### μλ΅:"
text = PROMPT.format_map({'instruction':"μλ
? λκ° ν μ μλκ² λμΌ?"})
input_ids = tokenizer.encode(text, return_tensors='pt').to(model.device)
gen_ids = model.generate(input_ids,
repetition_penalty=2.0,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
num_beams=4,
no_repeat_ngram_size=4,
max_new_tokens=128,
do_sample=True,
top_k=50)
generated = tokenizer.decode(gen_ids[0])
print(generated)
- Downloads last month
- 769
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.