metadata
language:
- en
pipeline_tag: unconditional-image-generation
tags:
- Diffusion Models
- Stable Diffusion
- Perturbed-Attention Guidance
- PAG
Perturbed-Attention Guidance
This repository is based on Diffusers. The pipeline is a modification of StableDiffusionPipeline to support Perturbed-Attention Guidance (PAG).
Quickstart
Loading Custom Piepline:
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
custom_pipeline="hyoungwoncho/sd_perturbed_attention_guidance",
torch_dtype=torch.float16,
safety_checker=None
)
device="cuda"
pipe = pipe.to(device)
prompts = ["a corgi"]
Sampling with PAG:
output = pipe(
prompts,
width=512,
height=512,
num_inference_steps=50,
guidance_scale=0.0,
pag_scale=5.0,
pag_applied_layers_index=['m0']
).images
Sampling with PAG and CFG:
output = pipe(
prompts,
width=512,
height=512,
num_inference_steps=50,
guidance_scale=4.0,
pag_scale=3.0,
pag_applied_layers_index=['m0']
).images
Parameters
guidance_scale : gudiance scale of CFG (ex: 7.5)
pag_scale : gudiance scale of PAG (ex: 5.0)
pag_applied_layers_index : index of the layer to apply perturbation (ex: ['m0'])
Stable Diffusion Demo
To join a demo of PAG on Stable Diffusion, run sd_pag_demo.ipynb.