language: code
thumbnail: https://cdn-media.huggingface.co/CodeBERTa/CodeBERTa.png
datasets:
- code_search_net
license: apache-2.0
base_model: huggingface/CodeBERTa-small-v1
CodeBERTa-language-id: The World’s fanciest programming language identification algo 🤯
To demonstrate the usefulness of our CodeBERTa pretrained model on downstream tasks beyond language modeling, we fine-tune the CodeBERTa-small-v1
checkpoint on the task of classifying a sample of code into the programming language it's written in (programming language identification).
We add a sequence classification head on top of the model.
On the evaluation dataset, we attain an eval accuracy and F1 > 0.999 which is not surprising given that the task of language identification is relatively easy (see an intuition why, below).
Quick start: using the raw model
CODEBERTA_LANGUAGE_ID = "huggingface/CodeBERTa-language-id"
tokenizer = RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID)
model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID)
input_ids = tokenizer.encode(CODE_TO_IDENTIFY)
logits = model(input_ids)[0]
language_idx = logits.argmax() # index for the resulting label
Quick start: using Pipelines 💪
from transformers import TextClassificationPipeline
pipeline = TextClassificationPipeline(
model=RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID),
tokenizer=RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID)
)
pipeline(CODE_TO_IDENTIFY)
Let's start with something very easy:
pipeline("""
def f(x):
return x**2
""")
# [{'label': 'python', 'score': 0.9999965}]
Now let's probe shorter code samples:
pipeline("const foo = 'bar'")
# [{'label': 'javascript', 'score': 0.9977546}]
What if I remove the const
token from the assignment?
pipeline("foo = 'bar'")
# [{'label': 'javascript', 'score': 0.7176245}]
For some reason, this is still statistically detected as JS code, even though it's also valid Python code. However, if we slightly tweak it:
pipeline("foo = u'bar'")
# [{'label': 'python', 'score': 0.7638422}]
This is now detected as Python (Notice the u
string modifier).
Okay, enough with the JS and Python domination already! Let's try fancier languages:
pipeline("echo $FOO")
# [{'label': 'php', 'score': 0.9995257}]
(Yes, I used the word "fancy" to describe PHP 😅)
pipeline("outcome := rand.Intn(6) + 1")
# [{'label': 'go', 'score': 0.9936151}]
Why is the problem of language identification so easy (with the correct toolkit)? Because code's syntax is rigid, and simple tokens such as :=
(the assignment operator in Go) are perfect predictors of the underlying language:
pipeline(":=")
# [{'label': 'go', 'score': 0.9998052}]
By the way, because we trained our own custom tokenizer on the CodeSearchNet dataset, and it handles streams of bytes in a very generic way, syntactic constructs such :=
are represented by a single token:
self.tokenizer.encode(" :=", add_special_tokens=False)
# [521]
Fine-tuning code
import gzip
import json
import logging
import os
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import torch
from sklearn.metrics import f1_score
from tokenizers.implementations.byte_level_bpe import ByteLevelBPETokenizer
from tokenizers.processors import BertProcessing
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.dataset import Dataset
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm, trange
from transformers import RobertaForSequenceClassification
from transformers.data.metrics import acc_and_f1, simple_accuracy
logging.basicConfig(level=logging.INFO)
CODEBERTA_PRETRAINED = "huggingface/CodeBERTa-small-v1"
LANGUAGES = [
"go",
"java",
"javascript",
"php",
"python",
"ruby",
]
FILES_PER_LANGUAGE = 1
EVALUATE = True
# Set up tokenizer
tokenizer = ByteLevelBPETokenizer("./pretrained/vocab.json", "./pretrained/merges.txt",)
tokenizer._tokenizer.post_processor = BertProcessing(
("</s>", tokenizer.token_to_id("</s>")), ("<s>", tokenizer.token_to_id("<s>")),
)
tokenizer.enable_truncation(max_length=512)
# Set up Tensorboard
tb_writer = SummaryWriter()
class CodeSearchNetDataset(Dataset):
examples: List[Tuple[List[int], int]]
def __init__(self, split: str = "train"):
"""
train | valid | test
"""
self.examples = []
src_files = []
for language in LANGUAGES:
src_files += list(
Path("../CodeSearchNet/resources/data/").glob(f"{language}/final/jsonl/{split}/*.jsonl.gz")
)[:FILES_PER_LANGUAGE]
for src_file in src_files:
label = src_file.parents[3].name
label_idx = LANGUAGES.index(label)
print("🔥", src_file, label)
lines = []
fh = gzip.open(src_file, mode="rt", encoding="utf-8")
for line in fh:
o = json.loads(line)
lines.append(o["code"])
examples = [(x.ids, label_idx) for x in tokenizer.encode_batch(lines)]
self.examples += examples
print("🔥🔥")
def __len__(self):
return len(self.examples)
def __getitem__(self, i):
# We’ll pad at the batch level.
return self.examples[i]
model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_PRETRAINED, num_labels=len(LANGUAGES))
train_dataset = CodeSearchNetDataset(split="train")
eval_dataset = CodeSearchNetDataset(split="test")
def collate(examples):
input_ids = pad_sequence([torch.tensor(x[0]) for x in examples], batch_first=True, padding_value=1)
labels = torch.tensor([x[1] for x in examples])
# ^^ uncessary .unsqueeze(-1)
return input_ids, labels
train_dataloader = DataLoader(train_dataset, batch_size=256, shuffle=True, collate_fn=collate)
batch = next(iter(train_dataloader))
model.to("cuda")
model.train()
for param in model.roberta.parameters():
param.requires_grad = False
## ^^ Only train final layer.
print(f"num params:", model.num_parameters())
print(f"num trainable params:", model.num_parameters(only_trainable=True))
def evaluate():
eval_loss = 0.0
nb_eval_steps = 0
preds = np.empty((0), dtype=np.int64)
out_label_ids = np.empty((0), dtype=np.int64)
model.eval()
eval_dataloader = DataLoader(eval_dataset, batch_size=512, collate_fn=collate)
for step, (input_ids, labels) in enumerate(tqdm(eval_dataloader, desc="Eval")):
with torch.no_grad():
outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda"))
loss = outputs[0]
logits = outputs[1]
eval_loss += loss.mean().item()
nb_eval_steps += 1
preds = np.append(preds, logits.argmax(dim=1).detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
acc = simple_accuracy(preds, out_label_ids)
f1 = f1_score(y_true=out_label_ids, y_pred=preds, average="macro")
print("=== Eval: loss ===", eval_loss)
print("=== Eval: acc. ===", acc)
print("=== Eval: f1 ===", f1)
# print(acc_and_f1(preds, out_label_ids))
tb_writer.add_scalars("eval", {"loss": eval_loss, "acc": acc, "f1": f1}, global_step)
### Training loop
global_step = 0
train_iterator = trange(0, 4, desc="Epoch")
optimizer = torch.optim.AdamW(model.parameters())
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
for step, (input_ids, labels) in enumerate(epoch_iterator):
optimizer.zero_grad()
outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda"))
loss = outputs[0]
loss.backward()
tb_writer.add_scalar("training_loss", loss.item(), global_step)
optimizer.step()
global_step += 1
if EVALUATE and global_step % 50 == 0:
evaluate()
model.train()
evaluate()
os.makedirs("./models/CodeBERT-language-id", exist_ok=True)
model.save_pretrained("./models/CodeBERT-language-id")
CodeSearchNet citation
@article{husain_codesearchnet_2019,
title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}},
shorttitle = {{CodeSearchNet} {Challenge}},
url = {http://arxiv.org/abs/1909.09436},
urldate = {2020-03-12},
journal = {arXiv:1909.09436 [cs, stat]},
author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
month = sep,
year = {2019},
note = {arXiv: 1909.09436},
}