CantoneseLLM
Collection
4 items
•
Updated
This model is a fine-tuned version of hon9kon9ize/CantoneseLLM-v1.0 on the sft_v1 dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3332 | 0.0480 | 100 | 1.3140 |
1.2185 | 0.0960 | 200 | 1.2879 |
1.1976 | 0.1439 | 300 | 1.2533 |
1.1627 | 0.1919 | 400 | 1.2169 |
1.178 | 0.2399 | 500 | 1.1766 |
1.133 | 0.2879 | 600 | 1.1296 |
1.0466 | 0.3359 | 700 | 1.0983 |
1.0657 | 0.3839 | 800 | 1.0770 |
1.054 | 0.4318 | 900 | 1.0617 |
1.0744 | 0.4798 | 1000 | 1.0487 |
0.9977 | 0.5278 | 1100 | 1.0383 |
0.9778 | 0.5758 | 1200 | 1.0290 |
1.0187 | 0.6238 | 1300 | 1.0211 |
1.085 | 0.6717 | 1400 | 1.0131 |
0.958 | 0.7197 | 1500 | 1.0072 |
1.0482 | 0.7677 | 1600 | 1.0007 |
0.9447 | 0.8157 | 1700 | 0.9946 |
1.0 | 0.8637 | 1800 | 0.9894 |
0.9685 | 0.9117 | 1900 | 0.9849 |
0.8576 | 0.9596 | 2000 | 0.9807 |
0.8853 | 1.0076 | 2100 | 0.9775 |
0.947 | 1.0556 | 2200 | 0.9739 |
0.9207 | 1.1036 | 2300 | 0.9713 |
0.8596 | 1.1516 | 2400 | 0.9691 |
1.0277 | 1.1995 | 2500 | 0.9655 |
0.9646 | 1.2475 | 2600 | 0.9631 |
0.8583 | 1.2955 | 2700 | 0.9613 |
0.9367 | 1.3435 | 2800 | 0.9589 |
0.9146 | 1.3915 | 2900 | 0.9570 |
0.9697 | 1.4395 | 3000 | 0.9556 |
0.8713 | 1.4874 | 3100 | 0.9542 |
0.9855 | 1.5354 | 3200 | 0.9524 |
0.8651 | 1.5834 | 3300 | 0.9511 |
0.9448 | 1.6314 | 3400 | 0.9495 |
0.8997 | 1.6794 | 3500 | 0.9485 |
1.0446 | 1.7273 | 3600 | 0.9475 |
0.8862 | 1.7753 | 3700 | 0.9465 |
0.873 | 1.8233 | 3800 | 0.9456 |
0.9893 | 1.8713 | 3900 | 0.9448 |
0.8915 | 1.9193 | 4000 | 0.9442 |
0.8854 | 1.9673 | 4100 | 0.9435 |
0.7608 | 2.0152 | 4200 | 0.9447 |
0.796 | 2.0632 | 4300 | 0.9464 |
0.9225 | 2.1112 | 4400 | 0.9467 |
0.9901 | 2.1592 | 4500 | 0.9467 |
0.9263 | 2.2072 | 4600 | 0.9468 |
0.7735 | 2.2551 | 4700 | 0.9467 |
0.8454 | 2.3031 | 4800 | 0.9464 |
0.8562 | 2.3511 | 4900 | 0.9466 |
0.8923 | 2.3991 | 5000 | 0.9464 |
0.7529 | 2.4471 | 5100 | 0.9463 |
0.8421 | 2.4951 | 5200 | 0.9463 |
0.8578 | 2.5430 | 5300 | 0.9463 |
0.8143 | 2.5910 | 5400 | 0.9464 |
0.8117 | 2.6390 | 5500 | 0.9463 |
0.861 | 2.6870 | 5600 | 0.9464 |
0.8415 | 2.7350 | 5700 | 0.9463 |
0.7846 | 2.7829 | 5800 | 0.9463 |
0.7605 | 2.8309 | 5900 | 0.9464 |
0.8721 | 2.8789 | 6000 | 0.9464 |
0.8566 | 2.9269 | 6100 | 0.9464 |
0.7978 | 2.9749 | 6200 | 0.9464 |
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 22.98 |
IFEval (0-Shot) | 44.55 |
BBH (3-Shot) | 28.54 |
MATH Lvl 5 (4-Shot) | 17.90 |
GPQA (0-shot) | 9.62 |
MuSR (0-shot) | 6.30 |
MMLU-PRO (5-shot) | 30.94 |