Edit model card
Deita banner

Model Card for Deita Llama1 13B V1.0 SFT

GitHub | Paper

Deita is an open-sourced project designed to facilitate Automatic Data Selection for instruction tuning in Large Language Models (LLMs). Deita Llama1 13B V1.0 SFT is a fine-tuned version of Llama 1 that was trained on 10k automatically selected lightweight, high-quality alignment SFT data: Deita 10K V0.

Model description

  • Model type: Model fine tuned on automatically selected lightweight, high-quality alignment SFT data.
  • Language(s) (NLP): Primarily English
  • Finetuned from model: Llama-1-13b-hf

Model Sources

Performance

Model Align Data Size MT-Bench AlpacaEval(%) OpenLLM (Avg.)
Proprietary Models
GPT-4-Turbo ? -- 9.32 97.70 --
GPT-4 SFT + PPO -- 8.99 95.03 --
Claude-2 SFT + PPO -- 8.06 91.36 --
GPT-3.5-turbo SFT + PPO -- 7.94 89.37 --
Open-sourced Models based on LLaMA-1-13B
LIMA SFT 1K SFT 4.29 41.98 59.82
WizardLM-13B SFT 70K SFT 6.35 75.31 58.96
Vicuna-13B-v1.3 SFT 125K SFT 6.39 82.11 60.01
Random SFT 10K SFT 6.03 71.52 60.14
DEITA-LLaMA1-13B-v1.0-sft SFT 10K SFT 6.60 78.01 64.27
Open-sourced Models based on LLaMA-2-13B
Tulu-2-13B SFT 326K SFT 6.70 78.90 --
Tulu-2-13B+DPO SFT + DPO 326K SFT + 60K DPO 7.00 89.50 --
LLaMA2-13B-Chat SFT + PPO -- 6.65 81.09 --
WizardLM-13B-v1.2 SFT >70K SFT 7.09 89.17 --
Vicuna-13B-v1.5 SFT 125K SFT 6.57 78.80 61.63
Random SFT 10K SFT 5.78 65.19 61.32
DEITA-LLaMA2-13B-v1.0-sft SFT 10K SFT 6.79 81.09 62.71
Open-sourced Models based on Mistral-7B
Mistral-7B-Instruct-v0.1 -- -- 6.84 69.65 60.45
Zephyr-7B-sft SFT 200K SFT 5.32 75.12 60.93
$\text{Zephyr-7B-}\beta$ SFT + DPO 200K SFT + 60K DPO 7.34 90.60 66.36
OpenChat-3.5 C-RLFT >> 70K C-RLFT 7.81 88.51 --
Starling-7B C-RLFT + APA >>70K C-RLFT + 183K APA 8.09 91.99 --
Random SFT 10K SFT 5.89 56.90 61.72
DEITA-7B-v1.0-sft (6K) SFT 6K SFT 7.22 80.78 64.94
DEITA-7B-v1.0-sft (10K) SFT 10K SFT 7.32 81.67 64.00
DEITA-7B-v1.0 SFT + DPO 6K SFT + 10K DPO 7.55 90.06 69.86

Input Format

The model is trained using the vicuna_v1.1 template

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hello! ASSISTANT: Hi!</s>USER: How are you? ASSISTANT:

Training hyperparameters

The following hyperparameters were used during fine tuning:

  • learning_rate: 2e-05
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Citation

If you find the content of this project helpful, please cite our paper as follows:

@misc{liu2023what,
      title={What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning}, 
      author={Wei Liu and Weihao Zeng and Keqing He and Yong Jiang and Junxian He},
      year={2023},
      eprint={2312.15685},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train hkust-nlp/deita-llama1-13b-v1.0-sft

Collection including hkust-nlp/deita-llama1-13b-v1.0-sft