hkivancoral's picture
End of training
398e30d
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_base_sgd_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.2

hushem_1x_deit_base_sgd_001_fold2

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3798
  • Accuracy: 0.2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4713 0.1333
1.4188 2.0 12 1.4634 0.1333
1.4188 3.0 18 1.4564 0.1333
1.4085 4.0 24 1.4508 0.1333
1.3911 5.0 30 1.4443 0.1333
1.3911 6.0 36 1.4385 0.1333
1.3816 7.0 42 1.4335 0.1333
1.3816 8.0 48 1.4295 0.1111
1.3793 9.0 54 1.4254 0.1111
1.3554 10.0 60 1.4214 0.1111
1.3554 11.0 66 1.4179 0.1111
1.3538 12.0 72 1.4149 0.1111
1.3538 13.0 78 1.4119 0.1333
1.3412 14.0 84 1.4092 0.1333
1.3299 15.0 90 1.4068 0.1333
1.3299 16.0 96 1.4046 0.1333
1.3323 17.0 102 1.4026 0.1333
1.3323 18.0 108 1.4005 0.1556
1.3314 19.0 114 1.3985 0.1556
1.319 20.0 120 1.3965 0.1778
1.319 21.0 126 1.3949 0.1556
1.3167 22.0 132 1.3934 0.1556
1.3167 23.0 138 1.3918 0.1556
1.3277 24.0 144 1.3905 0.1556
1.3028 25.0 150 1.3894 0.1556
1.3028 26.0 156 1.3882 0.1556
1.305 27.0 162 1.3873 0.1556
1.305 28.0 168 1.3863 0.1778
1.2998 29.0 174 1.3854 0.2
1.2987 30.0 180 1.3845 0.2
1.2987 31.0 186 1.3838 0.1778
1.2931 32.0 192 1.3831 0.1778
1.2931 33.0 198 1.3824 0.1778
1.3006 34.0 204 1.3818 0.1778
1.2837 35.0 210 1.3813 0.2
1.2837 36.0 216 1.3809 0.2
1.2882 37.0 222 1.3806 0.2
1.2882 38.0 228 1.3803 0.2
1.2892 39.0 234 1.3801 0.2
1.288 40.0 240 1.3799 0.2
1.288 41.0 246 1.3798 0.2
1.2923 42.0 252 1.3798 0.2
1.2923 43.0 258 1.3798 0.2
1.2814 44.0 264 1.3798 0.2
1.291 45.0 270 1.3798 0.2
1.291 46.0 276 1.3798 0.2
1.2879 47.0 282 1.3798 0.2
1.2879 48.0 288 1.3798 0.2
1.2801 49.0 294 1.3798 0.2
1.2884 50.0 300 1.3798 0.2

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.7
  • Tokenizers 0.15.0