|
--- |
|
library_name: diffusers |
|
--- |
|
|
|
Pipeline generated with |
|
|
|
```python |
|
import torch |
|
from diffusers import AutoencoderKL, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler, StableDiffusion3Pipeline |
|
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, T5EncoderModel, CLIPTokenizer, AutoTokenizer |
|
|
|
|
|
def get_dummy_components_sd3(): |
|
torch.manual_seed(0) |
|
transformer = SD3Transformer2DModel( |
|
sample_size=32, |
|
patch_size=1, |
|
in_channels=8, |
|
num_layers=4, |
|
attention_head_dim=8, |
|
num_attention_heads=4, |
|
joint_attention_dim=32, |
|
caption_projection_dim=32, |
|
pooled_projection_dim=64, |
|
out_channels=8, |
|
qk_norm="rms_norm", |
|
dual_attention_layers=(0, 1), |
|
) |
|
|
|
torch.manual_seed(0) |
|
clip_text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
|
|
torch.manual_seed(0) |
|
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) |
|
|
|
torch.manual_seed(0) |
|
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) |
|
|
|
torch.manual_seed(0) |
|
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
sample_size=32, |
|
in_channels=3, |
|
out_channels=3, |
|
block_out_channels=(4,), |
|
layers_per_block=1, |
|
latent_channels=8, |
|
norm_num_groups=1, |
|
use_quant_conv=False, |
|
use_post_quant_conv=False, |
|
shift_factor=0.0609, |
|
scaling_factor=1.5035, |
|
) |
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler() |
|
|
|
return { |
|
"scheduler": scheduler, |
|
"text_encoder": text_encoder, |
|
"text_encoder_2": text_encoder_2, |
|
"text_encoder_3": text_encoder_3, |
|
"tokenizer": tokenizer, |
|
"tokenizer_2": tokenizer_2, |
|
"tokenizer_3": tokenizer_3, |
|
"transformer": transformer, |
|
"vae": vae, |
|
} |
|
|
|
|
|
if __name__ == "__main__": |
|
components = get_dummy_components_sd3() |
|
pipeline = StableDiffusion3Pipeline(**components) |
|
pipeline.push_to_hub("DavyMorgan/tiny-sd35-pipe") |
|
``` |
|
|