Edit model card

mms-MDPC

This model is a fine-tuned version of facebook/mms-1b-all on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9364
  • Wer: 70.0250

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 14
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Wer
19.864 0.06 250 16.1732 100.1101
3.687 0.12 500 3.8920 100.0
3.2582 0.17 750 3.7154 100.0100
2.7525 0.23 1000 3.3154 99.8199
2.2947 0.29 1250 2.9790 95.2376
2.024 0.35 1500 2.7973 91.3057
1.9249 0.4 1750 2.7070 89.1546
1.7769 0.46 2000 2.6510 88.0640
1.7417 0.52 2250 2.6255 86.5633
1.7468 0.58 2500 2.6030 85.4227
1.6818 0.63 2750 2.5864 84.7624
1.6304 0.69 3000 2.5921 84.3522
1.6494 0.75 3250 2.5835 83.5118
1.5068 0.81 3500 2.5737 82.3712
1.6079 0.87 3750 2.5621 81.7509
1.5069 0.92 4000 2.5641 80.9605
1.5596 0.98 4250 2.5636 80.2801
1.5396 1.04 4500 2.5623 79.7899
1.3875 1.1 4750 2.5761 79.5198
1.3952 1.15 5000 2.5841 79.1596
1.3948 1.21 5250 2.5849 78.5493
1.49 1.27 5500 2.5898 78.6693
1.3669 1.33 5750 2.5908 78.5393
1.3488 1.38 6000 2.6110 78.2491
1.3431 1.44 6250 2.6172 77.8589
1.3429 1.5 6500 2.6238 77.5788
1.3683 1.56 6750 2.6229 77.4887
1.4073 1.62 7000 2.6362 76.9485
1.2954 1.67 7250 2.6421 76.8384
1.3793 1.73 7500 2.6392 76.5183
1.3223 1.79 7750 2.6513 76.2281
1.2377 1.85 8000 2.6695 75.8479
1.2889 1.9 8250 2.6720 75.6778
1.2456 1.96 8500 2.6769 75.3877
1.2595 2.02 8750 2.6945 74.9275
1.2332 2.08 9000 2.6904 74.8374
1.2874 2.13 9250 2.7051 74.4372
1.2886 2.19 9500 2.6900 74.2171
1.3229 2.25 9750 2.7075 74.2271
1.245 2.31 10000 2.7114 73.8369
1.2316 2.37 10250 2.7207 73.4767
1.2379 2.42 10500 2.7261 73.7669
1.1906 2.48 10750 2.7471 73.2666
1.3066 2.54 11000 2.7522 73.3667
1.2382 2.6 11250 2.7464 73.0065
1.2262 2.65 11500 2.7626 72.8564
1.3256 2.71 11750 2.7778 72.7264
1.2251 2.77 12000 2.7764 72.4762
1.2187 2.83 12250 2.7751 72.2261
1.2674 2.88 12500 2.7987 72.1861
1.2015 2.94 12750 2.8093 72.0160
1.1485 3.0 13000 2.8161 71.8059
1.1686 3.06 13250 2.8240 71.8659
1.1331 3.11 13500 2.8269 71.6658
1.1589 3.17 13750 2.8500 71.5558
1.2203 3.23 14000 2.8497 71.4557
1.1592 3.29 14250 2.8542 71.4057
1.1957 3.35 14500 2.8789 70.9955
1.202 3.4 14750 2.8694 71.0255
1.1397 3.46 15000 2.8777 70.8354
1.2431 3.52 15250 2.8925 70.5753
1.178 3.58 15500 2.8910 70.6453
1.1716 3.63 15750 2.9085 70.6153
1.1464 3.69 16000 2.8951 70.3752
1.1307 3.75 16250 2.9159 70.5253
1.2094 3.81 16500 2.9170 70.1851
1.1988 3.86 16750 2.9155 70.1151
1.2435 3.92 17000 2.9272 70.1151
1.1212 3.98 17250 2.9364 70.0250

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1
  • Datasets 2.19.1
  • Tokenizers 0.13.3
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for herwoww/mms-MDPC

Finetuned
(126)
this model