{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f788deb7950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f788deb79e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f788deb7a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f788deb7b00>", "_build": "<function ActorCriticPolicy._build at 0x7f788deb7b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f788deb7c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f788deb7cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f788deb7d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f788deb7dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f788deb7e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f788deb7ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f788defebd0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658937711.2639802, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAPCiZv1tZpr3Wkw8/PSwav/wiH7/1YQjAT2yPPjvolj/rni4/rq74PmvxHb9DNzU9lA2Bv5EAw7+p2Im8NXUtQMU0xz7+emi/QTcdP9K5ZD+V3Qi/H6WxvSdFc7/1UU68pGVRP4xhFD+4MBHAbEJWP8FtWD7tUQg/2gfgPt4tPD4TxKS/Ky3TPVbCAr/7mDy+9lkPP3hkmL+JFX++YJsvwO77lL9t8Sa+LscSPpuVaD95T8W+DHYEP8phdL7o6YLAN51Sv/d26D2tXEM/BJ/7Psd8nL+MYRQ/o7DhPmxCVj9/vDu93+qBPQURDz8yRwo/DDIBv9xBaz83vXY/A/EqvsUKMT+dZ669URVjPyxuCD5r7Vq/4L0YwP0gBT+hgRq/81Osvh7OrL88bE4/Rdc1vT+BUr88ng086bg2vzuIoT+kZVE/Otbcv6Ow4T6i75i/+5zCPxilZD+9Llw+/2rcPyDMSb8EBYI/MQi5v3E0wr6+GUG/fQ3IP02ubD/Q0F0+M+9pv41n2D9IzFU+rv8TwCWP+r8IDia/ap6bv0cw7z+FqNW+ygCmvxnyYb8VbNW+pGVRPzrW3L+jsOE+ou+Yv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAABh5s7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDjEvc9AAAAAOfp5b8AAAAAJEYRPgAAAAC1j+Y/AAAAAGhI5b0AAAAAF77rPwAAAAC1f5C9AAAAABvn4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3yZ8xAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/J9sPQAAAAAEnuq/AAAAAEG/Az4AAAAA1z8BQAAAAADprJC8AAAAAE8V8T8AAAAAGGhwPQAAAADkcQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtYikNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKEbEr4AAAAA+3P5vwAAAADWpwk+AAAAAEo/9D8AAAAAA6MYPQAAAABv//w/AAAAAOOS4z0AAAAArj3jvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhmrDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJAAO9AAAAAHGM8b8AAAAA+PPWPQAAAAD0m/s/AAAAAJXbPj0AAAAAwDoBQAAAAACMmBe9AAAAALdQ3L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJnnWrR0EHOMAWyUTegDjAF0lEdAqCuJF9a2W3V9lChoBkdAmD3ZqREF4mgHTegDaAhHQKgvOfcvduZ1fZQoaAZHQJY/sF+uvEFoB03oA2gIR0CoMGT7di2EdX2UKGgGR0CYG4+X7cfvaAdN6ANoCEdAqDET0voNeHV9lChoBkdAlpLxRMvh62gHTegDaAhHQKg4UsBhhH91fZQoaAZHQJb2+q+8Gs5oB03oA2gIR0CoPFlM7EHddX2UKGgGR0CU0BLvCuU2aAdN6ANoCEdAqD2N1r6+FnV9lChoBkdAlS8ST6i0wGgHTegDaAhHQKg+TO6d1+11fZQoaAZHQJZr8pc5bQloB03oA2gIR0CoRW6Q/5ckdX2UKGgGR0CVN9k5ZKWcaAdN6ANoCEdAqElgwqRU3nV9lChoBkdAk83EmMOwxGgHTegDaAhHQKhKm0O3DvV1fZQoaAZHQJT2WPYFqztoB03oA2gIR0CoS03iiqQzdX2UKGgGR0CYJFX0oSctaAdN6ANoCEdAqFJTR2KVIXV9lChoBkdAlwUC08eS0WgHTegDaAhHQKhWF1SwW311fZQoaAZHQJPg0fjjrAxoB03oA2gIR0CoV0oAfdRBdX2UKGgGR0CVG1UiILw4aAdN6ANoCEdAqFf4wRGtp3V9lChoBkdAlE3xA4XGfmgHTegDaAhHQKhfFcDbJwN1fZQoaAZHQJIm54t6HCZoB03oA2gIR0CoYuto8IRidX2UKGgGR0CWF4+i8FpxaAdN6ANoCEdAqGQdKIznBHV9lChoBkdAlXizFAE+xGgHTegDaAhHQKhkzUsnRb91fZQoaAZHQJV94Kc/dIpoB03oA2gIR0Coa8kYfnwHdX2UKGgGR0CW4k6v7m+1aAdN6ANoCEdAqG+W0b961XV9lChoBkdAlghNy1eBx2gHTegDaAhHQKhw0tOmBOJ1fZQoaAZHQJfGEb0e2eBoB03oA2gIR0CocYqgyuZDdX2UKGgGR0CVyiE/jbSJaAdN6ANoCEdAqHhhGz8gp3V9lChoBkdAlnv8kpqh12gHTegDaAhHQKh8IIldC3R1fZQoaAZHQJcaY3cYZVJoB03oA2gIR0CofVBg3LmqdX2UKGgGR0CZv7j9GZuyaAdN6ANoCEdAqH39tl7MPnV9lChoBkdAljeCowVTJmgHTegDaAhHQKiE76WPcSJ1fZQoaAZHQJQl5lbu+h5oB03oA2gIR0CoiLnndO6/dX2UKGgGR0CT6d/MnqmkaAdN6ANoCEdAqIno3gk1M3V9lChoBkdAlLaiaVlf7mgHTegDaAhHQKiKm7IT4+N1fZQoaAZHQJaLOFzuF6BoB03oA2gIR0CokYlchTwVdX2UKGgGR0CWXsl1r6+GaAdN6ANoCEdAqJVWaH9FWnV9lChoBkdAlKm8gEEDAGgHTegDaAhHQKiWgT0xubZ1fZQoaAZHQJFwD4WUKRdoB03oA2gIR0ColzEPtlZpdX2UKGgGR0CTFs0DU3GXaAdN6ANoCEdAqJ31YQrc03V9lChoBkdAlHvfMfRu0mgHTegDaAhHQKihnWS2Yv51fZQoaAZHQJhJIOCoS+RoB03oA2gIR0CoospzcRDkdX2UKGgGR0CXX1KfFrEcaAdN6ANoCEdAqKN5ccENfHV9lChoBkdAcjxm7aqS5mgHTRcCaAhHQKiqIjGkvbp1fZQoaAZHQJK4s3kxREZoB03oA2gIR0CoqlLG7z06dX2UKGgGR0CDudMvAXVLaAdN6ANoCEdAqK4Y3YL9dnV9lChoBkdAkp5HjdYW+GgHTegDaAhHQKivR+6RQrN1fZQoaAZHQHb+OU6gdwNoB03oA2gIR0Cotzn5JsfrdX2UKGgGR0B4cW0G/vfCaAdN6ANoCEdAqLeA9s7+1nV9lChoBkdAjqHcD0UXYWgHTegDaAhHQKi726UaAFx1fZQoaAZHQHqvmzOX3QFoB03oA2gIR0CovQf3vhIfdX2UKGgGR0BtS7XBguyvaAdN6ANoCEdAqMR19v0h/3V9lChoBkdAYoAN/e+EiGgHTegDaAhHQKjEpqL0jC51fZQoaAZHQIAHMM3IdU9oB03oA2gIR0CoyGlXRw6ydX2UKGgGR0CBskQ1aW5ZaAdN6ANoCEdAqMmSPS2H+XV9lChoBkdAhzxJd8iOemgHTegDaAhHQKjQ8bgCOm11fZQoaAZHQJAJCYrrgO1oB03oA2gIR0Co0SOn2qT9dX2UKGgGR0CMPTZWaMJhaAdN6ANoCEdAqNTuRDCxeXV9lChoBkdAh8+qMefZmWgHTegDaAhHQKjWHTbWVeN1fZQoaAZHQIw4HTTfBN5oB03oA2gIR0Co3XrDAJswdX2UKGgGR0CDKv24d6syaAdN6ANoCEdAqN2pyQxN7HV9lChoBkdAh7TOuaF23mgHTegDaAhHQKjhZPppvgp1fZQoaAZHQInRxo7FKkFoB03oA2gIR0Co4pj1PFefdX2UKGgGR0CPl5alDWsjaAdN6ANoCEdAqOn8RHww03V9lChoBkdAjRj/BnBciWgHTegDaAhHQKjqK9CeEqV1fZQoaAZHQItXhfpljExoB03oA2gIR0Co7friEQGwdX2UKGgGR0CR26bgjyFxaAdN6ANoCEdAqO8pvP1L8XV9lChoBkdAkv3qwY+B6WgHTegDaAhHQKj2nAKv3al1fZQoaAZHQJFr2UiY9gZoB03oA2gIR0Co9sqZML4OdX2UKGgGR0CRj2q1PWQPaAdN6ANoCEdAqPqBML4N7XV9lChoBkdAkvfPIXCTEGgHTegDaAhHQKj7rK0UoKF1fZQoaAZHQJEzuv7m+0xoB03oA2gIR0CpAvtr9EThdX2UKGgGR0CSSBQRPGhmaAdN6ANoCEdAqQMpSUC7snV9lChoBkdAktD0IomXxGgHTegDaAhHQKkG3XGOuJV1fZQoaAZHQJP0gmgJ1JVoB03oA2gIR0CpB/jSw4bTdX2UKGgGR0CVVp54nndPaAdN6ANoCEdAqQ9NCNS62HV9lChoBkdAkqeje0ojOmgHTegDaAhHQKkPe9rXUYt1fZQoaAZHQJVPSn3ta6loB03oA2gIR0CpE0qwY+B6dX2UKGgGR0CU3IPXkHUuaAdN6ANoCEdAqRR1oWYWtXV9lChoBkdAmJEZokAxSGgHTegDaAhHQKkbr6+nIhh1fZQoaAZHQJKf9F/hESdoB03oA2gIR0CpG98Djin6dX2UKGgGR0CXVwxcmjTKaAdN6ANoCEdAqR+hN47ihnV9lChoBkdAk8XeHerMkmgHTegDaAhHQKkgzk92X9l1fZQoaAZHQJXoQ3tKIzpoB03oA2gIR0CpKCjsUqQSdX2UKGgGR0CURkVNpM6BaAdN6ANoCEdAqShXigkC3nV9lChoBkdAkFDlhTfixWgHTegDaAhHQKksDoX9BKN1fZQoaAZHQJOZzZDiOvNoB03oA2gIR0CpLUpAlfJFdX2UKGgGR0CH/GhyKekIaAdN6ANoCEdAqTTSntOVPnV9lChoBkdAjtXlWwNb1WgHTegDaAhHQKk1AZ+hGpd1fZQoaAZHQJDeXDAJswdoB03oA2gIR0CpOKJC0F8pdX2UKGgGR0CReHqEOAiFaAdN6ANoCEdAqTnbTfBN23V9lChoBkdAlCCMgIQe3mgHTegDaAhHQKlBQsfaHsV1fZQoaAZHQJb0+EUTL4hoB03oA2gIR0CpQXChN/OMdX2UKGgGR0CL1ccawUxmaAdN6ANoCEdAqUVIetCAtnV9lChoBkdAkFqaQNkOJGgHTegDaAhHQKlGfrrxAjZ1fZQoaAZHQJXXsJZ4fOloB03oA2gIR0CpTe/WUbDNdX2UKGgGR0CHFBVHWjGlaAdN6ANoCEdAqU4oTK1XvHV9lChoBkdAkFgAjhUBGWgHTegDaAhHQKlR8+gUUPB1fZQoaAZHQJULNhRZU1hoB03oA2gIR0CpUyZ+6RQrdX2UKGgGR0CKDA27Wd3CaAdN6ANoCEdAqVqR/ZuhsnV9lChoBkdAjeIvYFqzq2gHTegDaAhHQKlawHsTnJV1fZQoaAZHQJJNOkyk9EFoB03oA2gIR0CpXoALApKBdX2UKGgGR0CVu/drwe/6aAdN6ANoCEdAqV+t/YraunVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}} |