heriosousa
commited on
Commit
•
c1f1124
1
Parent(s):
65ab84e
Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1020.71 +/- 201.31
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad7c1cbc4acb1a1bd036cc2331a3211d8adac989b80e3c2903c6533ab019a958
|
3 |
+
size 129189
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f788deb7950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f788deb79e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f788deb7a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f788deb7b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f788deb7b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f788deb7c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f788deb7cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f788deb7d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f788deb7dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f788deb7e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f788deb7ef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f788defebd0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1658937711.2639802,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAPCiZv1tZpr3Wkw8/PSwav/wiH7/1YQjAT2yPPjvolj/rni4/rq74PmvxHb9DNzU9lA2Bv5EAw7+p2Im8NXUtQMU0xz7+emi/QTcdP9K5ZD+V3Qi/H6WxvSdFc7/1UU68pGVRP4xhFD+4MBHAbEJWP8FtWD7tUQg/2gfgPt4tPD4TxKS/Ky3TPVbCAr/7mDy+9lkPP3hkmL+JFX++YJsvwO77lL9t8Sa+LscSPpuVaD95T8W+DHYEP8phdL7o6YLAN51Sv/d26D2tXEM/BJ/7Psd8nL+MYRQ/o7DhPmxCVj9/vDu93+qBPQURDz8yRwo/DDIBv9xBaz83vXY/A/EqvsUKMT+dZ669URVjPyxuCD5r7Vq/4L0YwP0gBT+hgRq/81Osvh7OrL88bE4/Rdc1vT+BUr88ng086bg2vzuIoT+kZVE/Otbcv6Ow4T6i75i/+5zCPxilZD+9Llw+/2rcPyDMSb8EBYI/MQi5v3E0wr6+GUG/fQ3IP02ubD/Q0F0+M+9pv41n2D9IzFU+rv8TwCWP+r8IDia/ap6bv0cw7z+FqNW+ygCmvxnyYb8VbNW+pGVRPzrW3L+jsOE+ou+Yv5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAABh5s7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDjEvc9AAAAAOfp5b8AAAAAJEYRPgAAAAC1j+Y/AAAAAGhI5b0AAAAAF77rPwAAAAC1f5C9AAAAABvn4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3yZ8xAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/J9sPQAAAAAEnuq/AAAAAEG/Az4AAAAA1z8BQAAAAADprJC8AAAAAE8V8T8AAAAAGGhwPQAAAADkcQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtYikNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKEbEr4AAAAA+3P5vwAAAADWpwk+AAAAAEo/9D8AAAAAA6MYPQAAAABv//w/AAAAAOOS4z0AAAAArj3jvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhmrDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJAAO9AAAAAHGM8b8AAAAA+PPWPQAAAAD0m/s/AAAAAJXbPj0AAAAAwDoBQAAAAACMmBe9AAAAALdQ3L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJnnWrR0EHOMAWyUTegDjAF0lEdAqCuJF9a2W3V9lChoBkdAmD3ZqREF4mgHTegDaAhHQKgvOfcvduZ1fZQoaAZHQJY/sF+uvEFoB03oA2gIR0CoMGT7di2EdX2UKGgGR0CYG4+X7cfvaAdN6ANoCEdAqDET0voNeHV9lChoBkdAlpLxRMvh62gHTegDaAhHQKg4UsBhhH91fZQoaAZHQJb2+q+8Gs5oB03oA2gIR0CoPFlM7EHddX2UKGgGR0CU0BLvCuU2aAdN6ANoCEdAqD2N1r6+FnV9lChoBkdAlS8ST6i0wGgHTegDaAhHQKg+TO6d1+11fZQoaAZHQJZr8pc5bQloB03oA2gIR0CoRW6Q/5ckdX2UKGgGR0CVN9k5ZKWcaAdN6ANoCEdAqElgwqRU3nV9lChoBkdAk83EmMOwxGgHTegDaAhHQKhKm0O3DvV1fZQoaAZHQJT2WPYFqztoB03oA2gIR0CoS03iiqQzdX2UKGgGR0CYJFX0oSctaAdN6ANoCEdAqFJTR2KVIXV9lChoBkdAlwUC08eS0WgHTegDaAhHQKhWF1SwW311fZQoaAZHQJPg0fjjrAxoB03oA2gIR0CoV0oAfdRBdX2UKGgGR0CVG1UiILw4aAdN6ANoCEdAqFf4wRGtp3V9lChoBkdAlE3xA4XGfmgHTegDaAhHQKhfFcDbJwN1fZQoaAZHQJIm54t6HCZoB03oA2gIR0CoYuto8IRidX2UKGgGR0CWF4+i8FpxaAdN6ANoCEdAqGQdKIznBHV9lChoBkdAlXizFAE+xGgHTegDaAhHQKhkzUsnRb91fZQoaAZHQJV94Kc/dIpoB03oA2gIR0Coa8kYfnwHdX2UKGgGR0CW4k6v7m+1aAdN6ANoCEdAqG+W0b961XV9lChoBkdAlghNy1eBx2gHTegDaAhHQKhw0tOmBOJ1fZQoaAZHQJfGEb0e2eBoB03oA2gIR0CocYqgyuZDdX2UKGgGR0CVyiE/jbSJaAdN6ANoCEdAqHhhGz8gp3V9lChoBkdAlnv8kpqh12gHTegDaAhHQKh8IIldC3R1fZQoaAZHQJcaY3cYZVJoB03oA2gIR0CofVBg3LmqdX2UKGgGR0CZv7j9GZuyaAdN6ANoCEdAqH39tl7MPnV9lChoBkdAljeCowVTJmgHTegDaAhHQKiE76WPcSJ1fZQoaAZHQJQl5lbu+h5oB03oA2gIR0CoiLnndO6/dX2UKGgGR0CT6d/MnqmkaAdN6ANoCEdAqIno3gk1M3V9lChoBkdAlLaiaVlf7mgHTegDaAhHQKiKm7IT4+N1fZQoaAZHQJaLOFzuF6BoB03oA2gIR0CokYlchTwVdX2UKGgGR0CWXsl1r6+GaAdN6ANoCEdAqJVWaH9FWnV9lChoBkdAlKm8gEEDAGgHTegDaAhHQKiWgT0xubZ1fZQoaAZHQJFwD4WUKRdoB03oA2gIR0ColzEPtlZpdX2UKGgGR0CTFs0DU3GXaAdN6ANoCEdAqJ31YQrc03V9lChoBkdAlHvfMfRu0mgHTegDaAhHQKihnWS2Yv51fZQoaAZHQJhJIOCoS+RoB03oA2gIR0CoospzcRDkdX2UKGgGR0CXX1KfFrEcaAdN6ANoCEdAqKN5ccENfHV9lChoBkdAcjxm7aqS5mgHTRcCaAhHQKiqIjGkvbp1fZQoaAZHQJK4s3kxREZoB03oA2gIR0CoqlLG7z06dX2UKGgGR0CDudMvAXVLaAdN6ANoCEdAqK4Y3YL9dnV9lChoBkdAkp5HjdYW+GgHTegDaAhHQKivR+6RQrN1fZQoaAZHQHb+OU6gdwNoB03oA2gIR0Cotzn5JsfrdX2UKGgGR0B4cW0G/vfCaAdN6ANoCEdAqLeA9s7+1nV9lChoBkdAjqHcD0UXYWgHTegDaAhHQKi726UaAFx1fZQoaAZHQHqvmzOX3QFoB03oA2gIR0CovQf3vhIfdX2UKGgGR0BtS7XBguyvaAdN6ANoCEdAqMR19v0h/3V9lChoBkdAYoAN/e+EiGgHTegDaAhHQKjEpqL0jC51fZQoaAZHQIAHMM3IdU9oB03oA2gIR0CoyGlXRw6ydX2UKGgGR0CBskQ1aW5ZaAdN6ANoCEdAqMmSPS2H+XV9lChoBkdAhzxJd8iOemgHTegDaAhHQKjQ8bgCOm11fZQoaAZHQJAJCYrrgO1oB03oA2gIR0Co0SOn2qT9dX2UKGgGR0CMPTZWaMJhaAdN6ANoCEdAqNTuRDCxeXV9lChoBkdAh8+qMefZmWgHTegDaAhHQKjWHTbWVeN1fZQoaAZHQIw4HTTfBN5oB03oA2gIR0Co3XrDAJswdX2UKGgGR0CDKv24d6syaAdN6ANoCEdAqN2pyQxN7HV9lChoBkdAh7TOuaF23mgHTegDaAhHQKjhZPppvgp1fZQoaAZHQInRxo7FKkFoB03oA2gIR0Co4pj1PFefdX2UKGgGR0CPl5alDWsjaAdN6ANoCEdAqOn8RHww03V9lChoBkdAjRj/BnBciWgHTegDaAhHQKjqK9CeEqV1fZQoaAZHQItXhfpljExoB03oA2gIR0Co7friEQGwdX2UKGgGR0CR26bgjyFxaAdN6ANoCEdAqO8pvP1L8XV9lChoBkdAkv3qwY+B6WgHTegDaAhHQKj2nAKv3al1fZQoaAZHQJFr2UiY9gZoB03oA2gIR0Co9sqZML4OdX2UKGgGR0CRj2q1PWQPaAdN6ANoCEdAqPqBML4N7XV9lChoBkdAkvfPIXCTEGgHTegDaAhHQKj7rK0UoKF1fZQoaAZHQJEzuv7m+0xoB03oA2gIR0CpAvtr9EThdX2UKGgGR0CSSBQRPGhmaAdN6ANoCEdAqQMpSUC7snV9lChoBkdAktD0IomXxGgHTegDaAhHQKkG3XGOuJV1fZQoaAZHQJP0gmgJ1JVoB03oA2gIR0CpB/jSw4bTdX2UKGgGR0CVVp54nndPaAdN6ANoCEdAqQ9NCNS62HV9lChoBkdAkqeje0ojOmgHTegDaAhHQKkPe9rXUYt1fZQoaAZHQJVPSn3ta6loB03oA2gIR0CpE0qwY+B6dX2UKGgGR0CU3IPXkHUuaAdN6ANoCEdAqRR1oWYWtXV9lChoBkdAmJEZokAxSGgHTegDaAhHQKkbr6+nIhh1fZQoaAZHQJKf9F/hESdoB03oA2gIR0CpG98Djin6dX2UKGgGR0CXVwxcmjTKaAdN6ANoCEdAqR+hN47ihnV9lChoBkdAk8XeHerMkmgHTegDaAhHQKkgzk92X9l1fZQoaAZHQJXoQ3tKIzpoB03oA2gIR0CpKCjsUqQSdX2UKGgGR0CURkVNpM6BaAdN6ANoCEdAqShXigkC3nV9lChoBkdAkFDlhTfixWgHTegDaAhHQKksDoX9BKN1fZQoaAZHQJOZzZDiOvNoB03oA2gIR0CpLUpAlfJFdX2UKGgGR0CH/GhyKekIaAdN6ANoCEdAqTTSntOVPnV9lChoBkdAjtXlWwNb1WgHTegDaAhHQKk1AZ+hGpd1fZQoaAZHQJDeXDAJswdoB03oA2gIR0CpOKJC0F8pdX2UKGgGR0CReHqEOAiFaAdN6ANoCEdAqTnbTfBN23V9lChoBkdAlCCMgIQe3mgHTegDaAhHQKlBQsfaHsV1fZQoaAZHQJb0+EUTL4hoB03oA2gIR0CpQXChN/OMdX2UKGgGR0CL1ccawUxmaAdN6ANoCEdAqUVIetCAtnV9lChoBkdAkFqaQNkOJGgHTegDaAhHQKlGfrrxAjZ1fZQoaAZHQJXXsJZ4fOloB03oA2gIR0CpTe/WUbDNdX2UKGgGR0CHFBVHWjGlaAdN6ANoCEdAqU4oTK1XvHV9lChoBkdAkFgAjhUBGWgHTegDaAhHQKlR8+gUUPB1fZQoaAZHQJULNhRZU1hoB03oA2gIR0CpUyZ+6RQrdX2UKGgGR0CKDA27Wd3CaAdN6ANoCEdAqVqR/ZuhsnV9lChoBkdAjeIvYFqzq2gHTegDaAhHQKlawHsTnJV1fZQoaAZHQJJNOkyk9EFoB03oA2gIR0CpXoALApKBdX2UKGgGR0CVu/drwe/6aAdN6ANoCEdAqV+t/YraunVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc33e1470ebb05802d5c3b416109e2bab889effc42e959a4df4eb13179207b78
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0efc879045f256b8bfc1587d78f94bd4ce237393d16cdfb0ab7ed5bf575c67c5
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f788deb7950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f788deb79e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f788deb7a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f788deb7b00>", "_build": "<function ActorCriticPolicy._build at 0x7f788deb7b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f788deb7c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f788deb7cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f788deb7d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f788deb7dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f788deb7e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f788deb7ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f788defebd0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658937711.2639802, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAPCiZv1tZpr3Wkw8/PSwav/wiH7/1YQjAT2yPPjvolj/rni4/rq74PmvxHb9DNzU9lA2Bv5EAw7+p2Im8NXUtQMU0xz7+emi/QTcdP9K5ZD+V3Qi/H6WxvSdFc7/1UU68pGVRP4xhFD+4MBHAbEJWP8FtWD7tUQg/2gfgPt4tPD4TxKS/Ky3TPVbCAr/7mDy+9lkPP3hkmL+JFX++YJsvwO77lL9t8Sa+LscSPpuVaD95T8W+DHYEP8phdL7o6YLAN51Sv/d26D2tXEM/BJ/7Psd8nL+MYRQ/o7DhPmxCVj9/vDu93+qBPQURDz8yRwo/DDIBv9xBaz83vXY/A/EqvsUKMT+dZ669URVjPyxuCD5r7Vq/4L0YwP0gBT+hgRq/81Osvh7OrL88bE4/Rdc1vT+BUr88ng086bg2vzuIoT+kZVE/Otbcv6Ow4T6i75i/+5zCPxilZD+9Llw+/2rcPyDMSb8EBYI/MQi5v3E0wr6+GUG/fQ3IP02ubD/Q0F0+M+9pv41n2D9IzFU+rv8TwCWP+r8IDia/ap6bv0cw7z+FqNW+ygCmvxnyYb8VbNW+pGVRPzrW3L+jsOE+ou+Yv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAABh5s7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDjEvc9AAAAAOfp5b8AAAAAJEYRPgAAAAC1j+Y/AAAAAGhI5b0AAAAAF77rPwAAAAC1f5C9AAAAABvn4b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD3yZ8xAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/J9sPQAAAAAEnuq/AAAAAEG/Az4AAAAA1z8BQAAAAADprJC8AAAAAE8V8T8AAAAAGGhwPQAAAADkcQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtYikNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKEbEr4AAAAA+3P5vwAAAADWpwk+AAAAAEo/9D8AAAAAA6MYPQAAAABv//w/AAAAAOOS4z0AAAAArj3jvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKhmrDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDJAAO9AAAAAHGM8b8AAAAA+PPWPQAAAAD0m/s/AAAAAJXbPj0AAAAAwDoBQAAAAACMmBe9AAAAALdQ3L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJnnWrR0EHOMAWyUTegDjAF0lEdAqCuJF9a2W3V9lChoBkdAmD3ZqREF4mgHTegDaAhHQKgvOfcvduZ1fZQoaAZHQJY/sF+uvEFoB03oA2gIR0CoMGT7di2EdX2UKGgGR0CYG4+X7cfvaAdN6ANoCEdAqDET0voNeHV9lChoBkdAlpLxRMvh62gHTegDaAhHQKg4UsBhhH91fZQoaAZHQJb2+q+8Gs5oB03oA2gIR0CoPFlM7EHddX2UKGgGR0CU0BLvCuU2aAdN6ANoCEdAqD2N1r6+FnV9lChoBkdAlS8ST6i0wGgHTegDaAhHQKg+TO6d1+11fZQoaAZHQJZr8pc5bQloB03oA2gIR0CoRW6Q/5ckdX2UKGgGR0CVN9k5ZKWcaAdN6ANoCEdAqElgwqRU3nV9lChoBkdAk83EmMOwxGgHTegDaAhHQKhKm0O3DvV1fZQoaAZHQJT2WPYFqztoB03oA2gIR0CoS03iiqQzdX2UKGgGR0CYJFX0oSctaAdN6ANoCEdAqFJTR2KVIXV9lChoBkdAlwUC08eS0WgHTegDaAhHQKhWF1SwW311fZQoaAZHQJPg0fjjrAxoB03oA2gIR0CoV0oAfdRBdX2UKGgGR0CVG1UiILw4aAdN6ANoCEdAqFf4wRGtp3V9lChoBkdAlE3xA4XGfmgHTegDaAhHQKhfFcDbJwN1fZQoaAZHQJIm54t6HCZoB03oA2gIR0CoYuto8IRidX2UKGgGR0CWF4+i8FpxaAdN6ANoCEdAqGQdKIznBHV9lChoBkdAlXizFAE+xGgHTegDaAhHQKhkzUsnRb91fZQoaAZHQJV94Kc/dIpoB03oA2gIR0Coa8kYfnwHdX2UKGgGR0CW4k6v7m+1aAdN6ANoCEdAqG+W0b961XV9lChoBkdAlghNy1eBx2gHTegDaAhHQKhw0tOmBOJ1fZQoaAZHQJfGEb0e2eBoB03oA2gIR0CocYqgyuZDdX2UKGgGR0CVyiE/jbSJaAdN6ANoCEdAqHhhGz8gp3V9lChoBkdAlnv8kpqh12gHTegDaAhHQKh8IIldC3R1fZQoaAZHQJcaY3cYZVJoB03oA2gIR0CofVBg3LmqdX2UKGgGR0CZv7j9GZuyaAdN6ANoCEdAqH39tl7MPnV9lChoBkdAljeCowVTJmgHTegDaAhHQKiE76WPcSJ1fZQoaAZHQJQl5lbu+h5oB03oA2gIR0CoiLnndO6/dX2UKGgGR0CT6d/MnqmkaAdN6ANoCEdAqIno3gk1M3V9lChoBkdAlLaiaVlf7mgHTegDaAhHQKiKm7IT4+N1fZQoaAZHQJaLOFzuF6BoB03oA2gIR0CokYlchTwVdX2UKGgGR0CWXsl1r6+GaAdN6ANoCEdAqJVWaH9FWnV9lChoBkdAlKm8gEEDAGgHTegDaAhHQKiWgT0xubZ1fZQoaAZHQJFwD4WUKRdoB03oA2gIR0ColzEPtlZpdX2UKGgGR0CTFs0DU3GXaAdN6ANoCEdAqJ31YQrc03V9lChoBkdAlHvfMfRu0mgHTegDaAhHQKihnWS2Yv51fZQoaAZHQJhJIOCoS+RoB03oA2gIR0CoospzcRDkdX2UKGgGR0CXX1KfFrEcaAdN6ANoCEdAqKN5ccENfHV9lChoBkdAcjxm7aqS5mgHTRcCaAhHQKiqIjGkvbp1fZQoaAZHQJK4s3kxREZoB03oA2gIR0CoqlLG7z06dX2UKGgGR0CDudMvAXVLaAdN6ANoCEdAqK4Y3YL9dnV9lChoBkdAkp5HjdYW+GgHTegDaAhHQKivR+6RQrN1fZQoaAZHQHb+OU6gdwNoB03oA2gIR0Cotzn5JsfrdX2UKGgGR0B4cW0G/vfCaAdN6ANoCEdAqLeA9s7+1nV9lChoBkdAjqHcD0UXYWgHTegDaAhHQKi726UaAFx1fZQoaAZHQHqvmzOX3QFoB03oA2gIR0CovQf3vhIfdX2UKGgGR0BtS7XBguyvaAdN6ANoCEdAqMR19v0h/3V9lChoBkdAYoAN/e+EiGgHTegDaAhHQKjEpqL0jC51fZQoaAZHQIAHMM3IdU9oB03oA2gIR0CoyGlXRw6ydX2UKGgGR0CBskQ1aW5ZaAdN6ANoCEdAqMmSPS2H+XV9lChoBkdAhzxJd8iOemgHTegDaAhHQKjQ8bgCOm11fZQoaAZHQJAJCYrrgO1oB03oA2gIR0Co0SOn2qT9dX2UKGgGR0CMPTZWaMJhaAdN6ANoCEdAqNTuRDCxeXV9lChoBkdAh8+qMefZmWgHTegDaAhHQKjWHTbWVeN1fZQoaAZHQIw4HTTfBN5oB03oA2gIR0Co3XrDAJswdX2UKGgGR0CDKv24d6syaAdN6ANoCEdAqN2pyQxN7HV9lChoBkdAh7TOuaF23mgHTegDaAhHQKjhZPppvgp1fZQoaAZHQInRxo7FKkFoB03oA2gIR0Co4pj1PFefdX2UKGgGR0CPl5alDWsjaAdN6ANoCEdAqOn8RHww03V9lChoBkdAjRj/BnBciWgHTegDaAhHQKjqK9CeEqV1fZQoaAZHQItXhfpljExoB03oA2gIR0Co7friEQGwdX2UKGgGR0CR26bgjyFxaAdN6ANoCEdAqO8pvP1L8XV9lChoBkdAkv3qwY+B6WgHTegDaAhHQKj2nAKv3al1fZQoaAZHQJFr2UiY9gZoB03oA2gIR0Co9sqZML4OdX2UKGgGR0CRj2q1PWQPaAdN6ANoCEdAqPqBML4N7XV9lChoBkdAkvfPIXCTEGgHTegDaAhHQKj7rK0UoKF1fZQoaAZHQJEzuv7m+0xoB03oA2gIR0CpAvtr9EThdX2UKGgGR0CSSBQRPGhmaAdN6ANoCEdAqQMpSUC7snV9lChoBkdAktD0IomXxGgHTegDaAhHQKkG3XGOuJV1fZQoaAZHQJP0gmgJ1JVoB03oA2gIR0CpB/jSw4bTdX2UKGgGR0CVVp54nndPaAdN6ANoCEdAqQ9NCNS62HV9lChoBkdAkqeje0ojOmgHTegDaAhHQKkPe9rXUYt1fZQoaAZHQJVPSn3ta6loB03oA2gIR0CpE0qwY+B6dX2UKGgGR0CU3IPXkHUuaAdN6ANoCEdAqRR1oWYWtXV9lChoBkdAmJEZokAxSGgHTegDaAhHQKkbr6+nIhh1fZQoaAZHQJKf9F/hESdoB03oA2gIR0CpG98Djin6dX2UKGgGR0CXVwxcmjTKaAdN6ANoCEdAqR+hN47ihnV9lChoBkdAk8XeHerMkmgHTegDaAhHQKkgzk92X9l1fZQoaAZHQJXoQ3tKIzpoB03oA2gIR0CpKCjsUqQSdX2UKGgGR0CURkVNpM6BaAdN6ANoCEdAqShXigkC3nV9lChoBkdAkFDlhTfixWgHTegDaAhHQKksDoX9BKN1fZQoaAZHQJOZzZDiOvNoB03oA2gIR0CpLUpAlfJFdX2UKGgGR0CH/GhyKekIaAdN6ANoCEdAqTTSntOVPnV9lChoBkdAjtXlWwNb1WgHTegDaAhHQKk1AZ+hGpd1fZQoaAZHQJDeXDAJswdoB03oA2gIR0CpOKJC0F8pdX2UKGgGR0CReHqEOAiFaAdN6ANoCEdAqTnbTfBN23V9lChoBkdAlCCMgIQe3mgHTegDaAhHQKlBQsfaHsV1fZQoaAZHQJb0+EUTL4hoB03oA2gIR0CpQXChN/OMdX2UKGgGR0CL1ccawUxmaAdN6ANoCEdAqUVIetCAtnV9lChoBkdAkFqaQNkOJGgHTegDaAhHQKlGfrrxAjZ1fZQoaAZHQJXXsJZ4fOloB03oA2gIR0CpTe/WUbDNdX2UKGgGR0CHFBVHWjGlaAdN6ANoCEdAqU4oTK1XvHV9lChoBkdAkFgAjhUBGWgHTegDaAhHQKlR8+gUUPB1fZQoaAZHQJULNhRZU1hoB03oA2gIR0CpUyZ+6RQrdX2UKGgGR0CKDA27Wd3CaAdN6ANoCEdAqVqR/ZuhsnV9lChoBkdAjeIvYFqzq2gHTegDaAhHQKlawHsTnJV1fZQoaAZHQJJNOkyk9EFoB03oA2gIR0CpXoALApKBdX2UKGgGR0CVu/drwe/6aAdN6ANoCEdAqV+t/YraunVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:668919395459a72d9e6d1e9b1091b6ef0df479a7e581a5dc02b47a5c516f6fd1
|
3 |
+
size 1016984
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1020.7140643765044, "std_reward": 201.30936093522703, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-27T17:02:28.357327"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeaf3db8b26d621d75fff9d0596ab71743035da3bed8e4ee227aa24735e50244
|
3 |
+
size 2763
|