hellork's picture
Upload README.md with huggingface_hub
f14e6ca verified
metadata
base_model: AdaptLLM/law-chat
datasets:
  - EleutherAI/pile
  - Open-Orca/OpenOrca
  - GAIR/lima
  - WizardLM/WizardLM_evol_instruct_V2_196k
language:
  - en
license: llama2
metrics:
  - accuracy
pipeline_tag: text-generation
tags:
  - legal
  - llama-cpp
  - gguf-my-repo
model-index:
  - name: law-chat
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 53.41
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/law-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 76.16
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/law-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 50.24
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/law-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 43.53
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/law-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 75.45
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/law-chat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 18.5
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/law-chat
          name: Open LLM Leaderboard

hellork/law-chat-IQ4_XS-GGUF

This model was converted to GGUF format from AdaptLLM/law-chat using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo hellork/law-chat-IQ4_XS-GGUF --hf-file law-chat-iq4_xs-imat.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo hellork/law-chat-IQ4_XS-GGUF --hf-file law-chat-iq4_xs-imat.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo hellork/law-chat-IQ4_XS-GGUF --hf-file law-chat-iq4_xs-imat.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo hellork/law-chat-IQ4_XS-GGUF --hf-file law-chat-iq4_xs-imat.gguf -c 2048