Fine-tuned-Indonesian-Sentiment-Classifier
This model is a fine-tuned version of indobenchmark/indobert-base-p1 on the IndoNLU's SmSA dataset. It achieves the following results on the evaluation dataset:
- Loss: 0.3233
- Accuracy: 0.9317
- F1: 0.9034
And the results of the test dataset:
- Accuracy: 0.928
- F1 macro: 0.9113470780757361
- F1 micro: 0.928
- F1 weighted: 0.9261959965604815
Model description
This model can be used to determine the sentiment of a text with three possible outputs [positive, negative, or neutral]
How to use
from transformers import AutoTokenizer, AutoModelForSequenceClassification
Pre-trained = "hanifnoerr/Fine-tuned-Indonesian-Sentiment-Classifier"
tokenizer = AutoTokenizer.from_pretrained(Pre-trained)
model = AutoModelForSequenceClassification.from_pretrained(Pre-trained)
make classification
pretrained_name = "hanifnoerr/Fine-tuned-Indonesian-Sentiment-Classifier"
sentimen = pipeline(tokenizer=pretrained_name, model=pretrained_name)
kalimat = "buku ini jelek sekali"
sentimen(kalimat)
output: [{'label': 'negative', 'score': 0.9996247291564941}]
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.08 | 1.0 | 688 | 0.3532 | 0.9310 | 0.9053 |
0.0523 | 2.0 | 1376 | 0.3233 | 0.9317 | 0.9034 |
0.045 | 3.0 | 2064 | 0.3949 | 0.9286 | 0.8995 |
0.0252 | 4.0 | 2752 | 0.4662 | 0.9310 | 0.9049 |
0.0149 | 5.0 | 3440 | 0.6251 | 0.9246 | 0.8899 |
0.0091 | 6.0 | 4128 | 0.6148 | 0.9254 | 0.8928 |
0.0111 | 7.0 | 4816 | 0.6259 | 0.9222 | 0.8902 |
0.0106 | 8.0 | 5504 | 0.6123 | 0.9238 | 0.8882 |
0.0092 | 9.0 | 6192 | 0.6353 | 0.9230 | 0.8928 |
0.0085 | 10.0 | 6880 | 0.6733 | 0.9254 | 0.8989 |
0.0062 | 11.0 | 7568 | 0.6666 | 0.9302 | 0.9027 |
0.0036 | 12.0 | 8256 | 0.7578 | 0.9230 | 0.8962 |
0.0055 | 13.0 | 8944 | 0.7378 | 0.9270 | 0.8947 |
0.0023 | 14.0 | 9632 | 0.7758 | 0.9230 | 0.8978 |
0.0009 | 15.0 | 10320 | 0.7051 | 0.9278 | 0.9006 |
0.0033 | 16.0 | 11008 | 0.7442 | 0.9214 | 0.8902 |
0.0 | 17.0 | 11696 | 0.7513 | 0.9254 | 0.8974 |
0.0 | 18.0 | 12384 | 0.7554 | 0.9270 | 0.8999 |
Although trained with 18 epochs, this model uses the best weight (Epoch 2)
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 1,423
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train hanifnoerr/Fine-tuned-Indonesian-Sentiment-Classifier
Evaluation results
- Accuracy on indonluvalidation set self-reported0.932
- F1 on indonluvalidation set self-reported0.903