guishe commited on
Commit
9d960ca
1 Parent(s): d1d4d02

Naming typos in code snippets

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -155,7 +155,7 @@ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained
155
  from span_marker import SpanMarkerModel
156
 
157
  # Download from the 🤗 Hub
158
- model = SpanMarkerModel.from_pretrained(guishe/span-marker-generic-ner-v1-fewnerd-fine-super")
159
  # Run inference
160
  entities = model.predict("Most of the Steven Seagal movie \"Under Siege \"(co-starring Tommy Lee Jones) was filmed on the, which is docked on Mobile Bay at Battleship Memorial Park and open to the public.")
161
  ```
@@ -169,7 +169,7 @@ You can finetune this model on your own dataset.
169
  from span_marker import SpanMarkerModel, Trainer
170
 
171
  # Download from the 🤗 Hub
172
- model = SpanMarkerModel.from_pretrained("guishe/span-marker-generic-entity_recognition-v1-fewnerd-fine-super")
173
 
174
  # Specify a Dataset with "tokens" and "ner_tag" columns
175
  dataset = load_dataset("conll2003") # For example CoNLL2003
@@ -181,7 +181,7 @@ trainer = Trainer(
181
  eval_dataset=dataset["validation"],
182
  )
183
  trainer.train()
184
- trainer.save_model("guishe/span-marker-generic-entity_recognition-v1-fewnerd-fine-super-finetuned")
185
  ```
186
  </details>
187
 
 
155
  from span_marker import SpanMarkerModel
156
 
157
  # Download from the 🤗 Hub
158
+ model = SpanMarkerModel.from_pretrained("guishe/span-marker-generic-ner-v1-fewnerd-fine-super")
159
  # Run inference
160
  entities = model.predict("Most of the Steven Seagal movie \"Under Siege \"(co-starring Tommy Lee Jones) was filmed on the, which is docked on Mobile Bay at Battleship Memorial Park and open to the public.")
161
  ```
 
169
  from span_marker import SpanMarkerModel, Trainer
170
 
171
  # Download from the 🤗 Hub
172
+ model = SpanMarkerModel.from_pretrained("guishe/span-marker-generic-ner-v1-fewnerd-fine-super")
173
 
174
  # Specify a Dataset with "tokens" and "ner_tag" columns
175
  dataset = load_dataset("conll2003") # For example CoNLL2003
 
181
  eval_dataset=dataset["validation"],
182
  )
183
  trainer.train()
184
+ trainer.save_model("guishe/span-marker-generic-ner-v1-fewnerd-fine-super-finetuned")
185
  ```
186
  </details>
187