NER Encoder-based Models
Collection
This collections gathers several NER models. Either fine-tuned versions for specific tasks or generic backbone models ready to be fine-tuned.
•
8 items
•
Updated
This is a SpanMarker model trained on the FewNERD dataset that can be used for Named Entity Recognition. This SpanMarker model uses numind/generic-entity_recognition_NER-v1 as the underlying encoder.
Label | Examples |
---|---|
art-broadcastprogram | "Corazones", "The Gale Storm Show : Oh , Susanna", "Street Cents" |
art-film | "Shawshank Redemption", "L'Atlantide", "Bosch" |
art-music | "Hollywood Studio Symphony", "Atkinson , Danko and Ford ( with Brockie and Hilton )", "Champion Lover" |
art-other | "The Today Show", "Venus de Milo", "Aphrodite of Milos" |
art-painting | "Production/Reproduction", "Touit", "Cofiwch Dryweryn" |
art-writtenart | "The Seven Year Itch", "Imelda de ' Lambertazzi", "Time" |
building-airport | "Sheremetyevo International Airport", "Newark Liberty International Airport", "Luton Airport" |
building-hospital | "Yeungnam University Hospital", "Hokkaido University Hospital", "Memorial Sloan-Kettering Cancer Center" |
building-hotel | "The Standard Hotel", "Flamingo Hotel", "Radisson Blu Sea Plaza Hotel" |
building-library | "British Library", "Bayerische Staatsbibliothek", "Berlin State Library" |
building-other | "Henry Ford Museum", "Alpha Recording Studios", "Communiplex" |
building-restaurant | "Carnegie Deli", "Fatburger", "Trumbull" |
building-sportsfacility | "Boston Garden", "Sports Center", "Glenn Warner Soccer Facility" |
building-theater | "Sanders Theatre", "National Paris Opera", "Pittsburgh Civic Light Opera" |
event-attack/battle/war/militaryconflict | "Easter Offensive", "Jurist", "Vietnam War" |
event-disaster | "the 1912 North Mount Lyell Disaster", "1990s North Korean famine", "1693 Sicily earthquake" |
event-election | "Elections to the European Parliament", "March 1898 elections", "1982 Mitcham and Morden by-election" |
event-other | "Union for a Popular Movement", "Masaryk Democratic Movement", "Eastwood Scoring Stage" |
event-protest | "Iranian Constitutional Revolution", "French Revolution", "Russian Revolution" |
event-sportsevent | "World Cup", "National Champions", "Stanley Cup" |
location-GPE | "Croatian", "Mediterranean Basin", "the Republic of Croatia" |
location-bodiesofwater | "Arthur Kill", "Atatürk Dam Lake", "Norfolk coast" |
location-island | "new Samsat district", "Laccadives", "Staten Island" |
location-mountain | "Salamander Glacier", "Miteirya Ridge", "Ruweisat Ridge" |
location-other | "Victoria line", "Northern City Line", "Cartuther" |
location-park | "Painted Desert Community Complex Historic District", "Gramercy Park", "Shenandoah National Park" |
location-road/railway/highway/transit | "NJT", "Newark-Elizabeth Rail Link", "Friern Barnet Road" |
organization-company | "Texas Chicken", "Dixy Chicken", "Church 's Chicken" |
organization-education | "MIT", "Belfast Royal Academy and the Ulster College of Physical Education", "Barnard College" |
organization-government/governmentagency | "Congregazione dei Nobili", "Diet", "Supreme Court" |
organization-media/newspaper | "Clash", "Al Jazeera", "TimeOut Melbourne" |
organization-other | "Defence Sector C", "IAEA", "4th Army" |
organization-politicalparty | "Al Wafa ' Islamic", "Shimpotō", "Kenseitō" |
organization-religion | "UPCUSA", "Christian", "Jewish" |
organization-showorganization | "Lizzy", "Bochumer Symphoniker", "Mr. Mister" |
organization-sportsleague | "China League One", "NHL", "First Division" |
organization-sportsteam | "Arsenal", "Luc Alphand Aventures", "Tottenham" |
other-astronomything | "Algol", "`` Caput Larvae ''", "Zodiac" |
other-award | "Order of the Republic of Guinea and Nigeria", "Grand Commander of the Order of the Niger", "GCON" |
other-biologything | "N-terminal lipid", "Amphiphysin", "BAR" |
other-chemicalthing | "uranium", "carbon dioxide", "sulfur" |
other-currency | "$", "lac crore", "Travancore Rupee" |
other-disease | "bladder cancer", "French Dysentery Epidemic of 1779", "hypothyroidism" |
other-educationaldegree | "BSc ( Hons ) in physics", "Bachelor", "Master" |
other-god | "Raijin", "Fujin", "El" |
other-language | "Breton-speaking", "Latin", "English" |
other-law | "Leahy–Smith America Invents Act ( AIA", "United States Freedom Support Act", "Thirty Years ' Peace" |
other-livingthing | "monkeys", "patchouli", "insects" |
other-medical | "amitriptyline", "Pediatrics", "pediatrician" |
person-actor | "Tchéky Karyo", "Edmund Payne", "Ellaline Terriss" |
person-artist/author | "Hicks", "Gaetano Donizett", "George Axelrod" |
person-athlete | "Tozawa", "Neville", "Jaguar" |
person-director | "Richard Quine", "Bob Swaim", "Frank Darabont" |
person-other | "Campbell", "Holden", "Richard Benson" |
person-politician | "William", "Rivière", "Emeric" |
person-scholar | "Wurdack", "Stalmine", "Stedman" |
person-soldier | "Joachim Ziegler", "Helmuth Weidling", "Krukenberg" |
product-airplane | "Spey-equipped FGR.2s", "EC135T2 CPDS", "Luton" |
product-car | "Phantom", "100EX", "Corvettes - GT1 C6R" |
product-food | "red grape", "yakiniku", "V. labrusca" |
product-game | "Hardcore RPG", "Splinter Cell", "Airforce Delta" |
product-other | "X11", "PDP-1", "Fairbottom Bobs" |
product-ship | "Essex", "Congress", "HMS `` Chinkara ''" |
product-software | "AmiPDF", "Wikipedia", "Apdf" |
product-train | "55022", "Royal Scots Grey", "High Speed Trains" |
product-weapon | "AR-15 's", "ZU-23-2MR Wróbel II", "ZU-23-2M Wróbel" |
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("guishe/span-marker-generic-ner-v1-fewnerd-fine-super")
# Run inference
entities = model.predict("Most of the Steven Seagal movie \"Under Siege \"(co-starring Tommy Lee Jones) was filmed on the, which is docked on Mobile Bay at Battleship Memorial Park and open to the public.")
You can finetune this model on your own dataset.
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("guishe/span-marker-generic-ner-v1-fewnerd-fine-super")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("guishe/span-marker-generic-ner-v1-fewnerd-fine-super-finetuned")
Training set | Min | Median | Max |
---|---|---|---|
Sentence length | 1 | 24.4945 | 267 |
Entities per sentence | 0 | 2.5832 | 88 |
Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
---|---|---|---|---|---|---|
0.2980 | 3000 | 0.0290 | 0.6503 | 0.6402 | 0.6452 | 0.9109 |
0.5961 | 6000 | 0.0250 | 0.6749 | 0.6794 | 0.6772 | 0.9202 |
0.8941 | 9000 | 0.0236 | 0.6908 | 0.6871 | 0.6889 | 0.9229 |
1.1921 | 12000 | 0.0234 | 0.6853 | 0.7007 | 0.6929 | 0.9239 |
1.4902 | 15000 | 0.0227 | 0.6966 | 0.6929 | 0.6948 | 0.9241 |
1.7882 | 18000 | 0.0221 | 0.7073 | 0.6922 | 0.6997 | 0.9250 |
2.0862 | 21000 | 0.0223 | 0.7003 | 0.6993 | 0.6998 | 0.9252 |
2.3843 | 24000 | 0.0222 | 0.6971 | 0.7027 | 0.6999 | 0.9254 |
2.6823 | 27000 | 0.0219 | 0.7044 | 0.7004 | 0.7024 | 0.9259 |
2.9803 | 30000 | 0.0219 | 0.7047 | 0.7032 | 0.7040 | 0.9261 |
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Base model
numind/NuNER-v0.1