hau_latn_1000mb / README.md
goldfish-models's picture
Upload README.md with huggingface_hub
48f419c verified
|
raw
history blame
3.23 kB
---
license: apache-2.0
language:
- hau
datasets:
- allenai/MADLAD-400
- allenai/nllb
- cis-lmu/Glot500
- castorini/afriberta-corpus
library_name: transformers
pipeline_tag: text-generation
tags:
- goldfish
- arxiv:2408.10441
---
# hau_latn_1000mb
Goldfish is a suite of monolingual language models trained for 350 languages.
This model is the <b>Hausa</b> (Latin script) model trained on 1000MB of data, after accounting for an estimated byte premium of 1.18; content-matched text in Hausa takes on average 1.18x as many UTF-8 bytes to encode as English.
The Goldfish models are trained primarily for comparability across languages and for low-resource languages; Goldfish performance for high-resource languages is not designed to be comparable with modern large language models (LLMs).
Note: hau_latn is an [individual language](https://iso639-3.sil.org/code_tables/639/data) code. It is not contained in any macrolanguage codes contained in Goldfish (for script latn).
All training and hyperparameter details are in our paper, [Goldfish: Monolingual Language Models for 350 Languages (Chang et al., 2024)](https://www.arxiv.org/abs/2408.10441).
Training code and sample usage: https://github.com/tylerachang/goldfish
Sample usage also in this Google Colab: [link](https://colab.research.google.com/drive/1rHFpnQsyXJ32ONwCosWZ7frjOYjbGCXG?usp=sharing)
## Model details:
To access all Goldfish model details programmatically, see https://github.com/tylerachang/goldfish/blob/main/model_details.json.
All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
For best results, make sure that [CLS] is prepended to your input sequence (see sample usage linked above)!
Details for this model specifically:
* Architecture: gpt2
* Parameters: 124770816
* Maximum sequence length: 512 tokens
* Training text data (raw): 1176.53MB
* Training text data (byte premium scaled): 1000.005MB
* Training tokens: 277416448 (x10 epochs)
* Vocabulary size: 50000
* Compute cost: 1.41575469760512e+18 FLOPs or ~133.9 NVIDIA A6000 GPU hours
Training datasets (percentages prior to deduplication):
* 31.25887%: [MADLAD-400 (CommonCrawl)](https://huggingface.co/datasets/allenai/MADLAD-400)
* 29.98045%: [NLLB (CommonCrawl and ParaCrawl)](https://huggingface.co/datasets/allenai/nllb)
* 27.12632%: [Glot500](https://huggingface.co/datasets/cis-lmu/Glot500), including [AfriBERTa](https://huggingface.co/datasets/castorini/afriberta-corpus), [AfroMAFT](https://zenodo.org/record/6990611#.Y0-yU-xBw-Q), [CCNet](https://github.com/facebookresearch/cc_net), [TeDDi](https://github.com/MorphDiv/TeDDi_sample), [TICO](https://tico-19.github.io/)
* 8.31691%: [AfriBERTa](https://huggingface.co/datasets/castorini/afriberta-corpus)
* 3.07782%: [Wikipedia 2023/08](https://dumps.wikimedia.org/)
* 0.23963%: [eBible](https://ebible.org/find/)
## Citation
If you use this model, please cite:
```
@article{chang-etal-2024-goldfish,
title={Goldfish: Monolingual Language Models for 350 Languages},
author={Chang, Tyler A. and Arnett, Catherine and Tu, Zhuowen and Bergen, Benjamin K.},
journal={Preprint},
year={2024},
url={https://www.arxiv.org/abs/2408.10441},
}
```