Edit model card

whisper-base.en-speech-commands-h

This model is a fine-tuned version of openai/whisper-base.en on the speech_commands dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3313
  • Accuracy: 0.7923

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3859 1.0 412 1.3474 0.7707
0.2732 2.0 824 1.2471 0.7599
0.2373 3.0 1236 1.2114 0.7729
0.1694 4.0 1648 1.1600 0.7914
0.1495 5.0 2060 1.1535 0.7914
0.1931 6.0 2472 1.1446 0.7860
0.1329 7.0 2884 1.3313 0.7923
0.0731 8.0 3296 1.2812 0.7860
0.0702 9.0 3708 1.2134 0.7873
0.0828 10.0 4120 1.6292 0.7887
0.08 11.0 4532 1.4677 0.7797
0.0481 12.0 4944 1.3770 0.7909

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
20M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for gokuls/whisper-base.en-speech-commands-h

Finetuned
(26)
this model

Dataset used to train gokuls/whisper-base.en-speech-commands-h

Evaluation results