|
--- |
|
language: sk |
|
tags: |
|
- SlovakBERT |
|
license: mit |
|
datasets: |
|
- wikipedia |
|
- opensubtitles |
|
- oscar |
|
- gerulatawebcrawl |
|
- gerulatamonitoring |
|
- blbec.online |
|
--- |
|
|
|
# SlovakBERT (base-sized model) |
|
SlovakBERT pretrained model on Slovak language using a masked language modeling (MLM) objective. This model is case-sensitive: it makes a difference between slovensko and Slovensko. |
|
|
|
## Intended uses & limitations |
|
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. |
|
**IMPORTANT**: The model was not trained on the “ and ” (direct quote) character -> so before tokenizing the text, it is advised to replace all “ and ” (direct quote marks) with a single "(double quote marks). |
|
|
|
### How to use |
|
You can use this model directly with a pipeline for masked language modeling: |
|
|
|
```python |
|
from transformers import pipeline |
|
unmasker = pipeline('fill-mask', model='gerulata/slovakbert') |
|
unmasker("Deti sa <mask> na ihrisku.") |
|
|
|
[{'sequence': 'Deti sa hrali na ihrisku.', |
|
'score': 0.6355380415916443, |
|
'token': 5949, |
|
'token_str': ' hrali'}, |
|
{'sequence': 'Deti sa hrajú na ihrisku.', |
|
'score': 0.14731724560260773, |
|
'token': 9081, |
|
'token_str': ' hrajú'}, |
|
{'sequence': 'Deti sa zahrali na ihrisku.', |
|
'score': 0.05016357824206352, |
|
'token': 32553, |
|
'token_str': ' zahrali'}, |
|
{'sequence': 'Deti sa stretli na ihrisku.', |
|
'score': 0.041727423667907715, |
|
'token': 5964, |
|
'token_str': ' stretli'}, |
|
{'sequence': 'Deti sa učia na ihrisku.', |
|
'score': 0.01886524073779583, |
|
'token': 18099, |
|
'token_str': ' učia'}] |
|
``` |
|
|
|
Here is how to use this model to get the features of a given text in PyTorch: |
|
```python |
|
from transformers import RobertaTokenizer, RobertaModel |
|
tokenizer = RobertaTokenizer.from_pretrained('gerulata/slovakbert') |
|
model = RobertaModel.from_pretrained('gerulata/slovakbert') |
|
text = "Text ktorý sa má embedovať." |
|
encoded_input = tokenizer(text, return_tensors='pt') |
|
output = model(**encoded_input) |
|
``` |
|
and in TensorFlow: |
|
```python |
|
from transformers import RobertaTokenizer, TFRobertaModel |
|
tokenizer = RobertaTokenizer.from_pretrained('gerulata/slovakbert') |
|
model = TFRobertaModel.from_pretrained('gerulata/slovakbert') |
|
text = "Text ktorý sa má embedovať." |
|
encoded_input = tokenizer(text, return_tensors='tf') |
|
output = model(encoded_input) |
|
``` |
|
Or extract information from the model like this: |
|
```python |
|
from transformers import pipeline |
|
unmasker = pipeline('fill-mask', model='gerulata/slovakbert') |
|
unmasker("Slovenské národne povstanie sa uskutočnilo v roku <mask>.") |
|
|
|
[{'sequence': 'Slovenske narodne povstanie sa uskutočnilo v roku 1944.', |
|
'score': 0.7383289933204651, |
|
'token': 16621, |
|
'token_str': ' 1944'},...] |
|
``` |
|
|
|
# Training data |
|
The SlovakBERT model was pretrained on these datasets: |
|
|
|
- Wikipedia (326MB of text), |
|
- OpenSubtitles (415MB of text), |
|
- Oscar (4.6GB of text), |
|
- Gerulata WebCrawl (12.7GB of text) , |
|
- Gerulata Monitoring (214 MB of text), |
|
- blbec.online (4.5GB of text) |
|
|
|
The text was then processed with the following steps: |
|
- URL and email addresses were replaced with special tokens ("url", "email"). |
|
- Elongated interpunction was reduced (e.g. -- to -). |
|
- Markdown syntax was deleted. |
|
- All text content in braces f.g was eliminated to reduce the amount of markup and programming language text. |
|
|
|
We segmented the resulting corpus into sentences and removed duplicates to get 181.6M unique sentences. In total, the final corpus has 19.35GB of text. |
|
|
|
# Pretraining |
|
The model was trained in **fairseq** on 4 x Nvidia A100 GPUs for 300K steps with a batch size of 512 and a sequence length of 512. The optimizer used is Adam with a learning rate of 5e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and \\(\epsilon = 1e-6\\), a weight decay of 0.01, dropout rate 0.1, learning rate warmup for 10k steps and linear decay of the learning rate after. We used 16-bit float precision. |
|
|
|
## About us |
|
<a href="https://www.gerulata.com/"> |
|
<img width="300px" src="https://www.gerulata.com/assets/images/Logo_Blue.svg"> |
|
</a> |
|
|
|
Gerulata uses near real-time monitoring, advanced analytics and machine learning to help create a safer, more productive and enjoyable online environment for everyone. |
|
|
|
### BibTeX entry and citation info |
|
If you find our resource or paper is useful, please consider including the following citation in your paper. |
|
- https://arxiv.org/abs/2109.15254 |
|
|
|
``` |
|
@misc{pikuliak2021slovakbert, |
|
title={SlovakBERT: Slovak Masked Language Model}, |
|
author={Matúš Pikuliak and Štefan Grivalský and Martin Konôpka and Miroslav Blšták and Martin Tamajka and Viktor Bachratý and Marián Šimko and Pavol Balážik and Michal Trnka and Filip Uhlárik}, |
|
year={2021}, |
|
eprint={2109.15254}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |