File size: 21,654 Bytes
45b4aa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from collections import defaultdict
from itertools import chain
from torch.nn.utils import clip_grad
from annotator.uniformer.mmcv.utils import TORCH_VERSION, _BatchNorm, digit_version
from ..dist_utils import allreduce_grads
from ..fp16_utils import LossScaler, wrap_fp16_model
from .hook import HOOKS, Hook
try:
# If PyTorch version >= 1.6.0, torch.cuda.amp.GradScaler would be imported
# and used; otherwise, auto fp16 will adopt mmcv's implementation.
from torch.cuda.amp import GradScaler
except ImportError:
pass
@HOOKS.register_module()
class OptimizerHook(Hook):
def __init__(self, grad_clip=None):
self.grad_clip = grad_clip
def clip_grads(self, params):
params = list(
filter(lambda p: p.requires_grad and p.grad is not None, params))
if len(params) > 0:
return clip_grad.clip_grad_norm_(params, **self.grad_clip)
def after_train_iter(self, runner):
runner.optimizer.zero_grad()
runner.outputs['loss'].backward()
if self.grad_clip is not None:
grad_norm = self.clip_grads(runner.model.parameters())
if grad_norm is not None:
# Add grad norm to the logger
runner.log_buffer.update({'grad_norm': float(grad_norm)},
runner.outputs['num_samples'])
runner.optimizer.step()
@HOOKS.register_module()
class GradientCumulativeOptimizerHook(OptimizerHook):
"""Optimizer Hook implements multi-iters gradient cumulating.
Args:
cumulative_iters (int, optional): Num of gradient cumulative iters.
The optimizer will step every `cumulative_iters` iters.
Defaults to 1.
Examples:
>>> # Use cumulative_iters to simulate a large batch size
>>> # It is helpful when the hardware cannot handle a large batch size.
>>> loader = DataLoader(data, batch_size=64)
>>> optim_hook = GradientCumulativeOptimizerHook(cumulative_iters=4)
>>> # almost equals to
>>> loader = DataLoader(data, batch_size=256)
>>> optim_hook = OptimizerHook()
"""
def __init__(self, cumulative_iters=1, **kwargs):
super(GradientCumulativeOptimizerHook, self).__init__(**kwargs)
assert isinstance(cumulative_iters, int) and cumulative_iters > 0, \
f'cumulative_iters only accepts positive int, but got ' \
f'{type(cumulative_iters)} instead.'
self.cumulative_iters = cumulative_iters
self.divisible_iters = 0
self.remainder_iters = 0
self.initialized = False
def has_batch_norm(self, module):
if isinstance(module, _BatchNorm):
return True
for m in module.children():
if self.has_batch_norm(m):
return True
return False
def _init(self, runner):
if runner.iter % self.cumulative_iters != 0:
runner.logger.warning(
'Resume iter number is not divisible by cumulative_iters in '
'GradientCumulativeOptimizerHook, which means the gradient of '
'some iters is lost and the result may be influenced slightly.'
)
if self.has_batch_norm(runner.model) and self.cumulative_iters > 1:
runner.logger.warning(
'GradientCumulativeOptimizerHook may slightly decrease '
'performance if the model has BatchNorm layers.')
residual_iters = runner.max_iters - runner.iter
self.divisible_iters = (
residual_iters // self.cumulative_iters * self.cumulative_iters)
self.remainder_iters = residual_iters - self.divisible_iters
self.initialized = True
def after_train_iter(self, runner):
if not self.initialized:
self._init(runner)
if runner.iter < self.divisible_iters:
loss_factor = self.cumulative_iters
else:
loss_factor = self.remainder_iters
loss = runner.outputs['loss']
loss = loss / loss_factor
loss.backward()
if (self.every_n_iters(runner, self.cumulative_iters)
or self.is_last_iter(runner)):
if self.grad_clip is not None:
grad_norm = self.clip_grads(runner.model.parameters())
if grad_norm is not None:
# Add grad norm to the logger
runner.log_buffer.update({'grad_norm': float(grad_norm)},
runner.outputs['num_samples'])
runner.optimizer.step()
runner.optimizer.zero_grad()
if (TORCH_VERSION != 'parrots'
and digit_version(TORCH_VERSION) >= digit_version('1.6.0')):
@HOOKS.register_module()
class Fp16OptimizerHook(OptimizerHook):
"""FP16 optimizer hook (using PyTorch's implementation).
If you are using PyTorch >= 1.6, torch.cuda.amp is used as the backend,
to take care of the optimization procedure.
Args:
loss_scale (float | str | dict): Scale factor configuration.
If loss_scale is a float, static loss scaling will be used with
the specified scale. If loss_scale is a string, it must be
'dynamic', then dynamic loss scaling will be used.
It can also be a dict containing arguments of GradScalar.
Defaults to 512. For Pytorch >= 1.6, mmcv uses official
implementation of GradScaler. If you use a dict version of
loss_scale to create GradScaler, please refer to:
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler
for the parameters.
Examples:
>>> loss_scale = dict(
... init_scale=65536.0,
... growth_factor=2.0,
... backoff_factor=0.5,
... growth_interval=2000
... )
>>> optimizer_hook = Fp16OptimizerHook(loss_scale=loss_scale)
"""
def __init__(self,
grad_clip=None,
coalesce=True,
bucket_size_mb=-1,
loss_scale=512.,
distributed=True):
self.grad_clip = grad_clip
self.coalesce = coalesce
self.bucket_size_mb = bucket_size_mb
self.distributed = distributed
self._scale_update_param = None
if loss_scale == 'dynamic':
self.loss_scaler = GradScaler()
elif isinstance(loss_scale, float):
self._scale_update_param = loss_scale
self.loss_scaler = GradScaler(init_scale=loss_scale)
elif isinstance(loss_scale, dict):
self.loss_scaler = GradScaler(**loss_scale)
else:
raise ValueError('loss_scale must be of type float, dict, or '
f'"dynamic", got {loss_scale}')
def before_run(self, runner):
"""Preparing steps before Mixed Precision Training."""
# wrap model mode to fp16
wrap_fp16_model(runner.model)
# resume from state dict
if 'fp16' in runner.meta and 'loss_scaler' in runner.meta['fp16']:
scaler_state_dict = runner.meta['fp16']['loss_scaler']
self.loss_scaler.load_state_dict(scaler_state_dict)
def copy_grads_to_fp32(self, fp16_net, fp32_weights):
"""Copy gradients from fp16 model to fp32 weight copy."""
for fp32_param, fp16_param in zip(fp32_weights,
fp16_net.parameters()):
if fp16_param.grad is not None:
if fp32_param.grad is None:
fp32_param.grad = fp32_param.data.new(
fp32_param.size())
fp32_param.grad.copy_(fp16_param.grad)
def copy_params_to_fp16(self, fp16_net, fp32_weights):
"""Copy updated params from fp32 weight copy to fp16 model."""
for fp16_param, fp32_param in zip(fp16_net.parameters(),
fp32_weights):
fp16_param.data.copy_(fp32_param.data)
def after_train_iter(self, runner):
"""Backward optimization steps for Mixed Precision Training. For
dynamic loss scaling, please refer to
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler.
1. Scale the loss by a scale factor.
2. Backward the loss to obtain the gradients.
3. Unscale the optimizer’s gradient tensors.
4. Call optimizer.step() and update scale factor.
5. Save loss_scaler state_dict for resume purpose.
"""
# clear grads of last iteration
runner.model.zero_grad()
runner.optimizer.zero_grad()
self.loss_scaler.scale(runner.outputs['loss']).backward()
self.loss_scaler.unscale_(runner.optimizer)
# grad clip
if self.grad_clip is not None:
grad_norm = self.clip_grads(runner.model.parameters())
if grad_norm is not None:
# Add grad norm to the logger
runner.log_buffer.update({'grad_norm': float(grad_norm)},
runner.outputs['num_samples'])
# backward and update scaler
self.loss_scaler.step(runner.optimizer)
self.loss_scaler.update(self._scale_update_param)
# save state_dict of loss_scaler
runner.meta.setdefault(
'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict()
@HOOKS.register_module()
class GradientCumulativeFp16OptimizerHook(GradientCumulativeOptimizerHook,
Fp16OptimizerHook):
"""Fp16 optimizer Hook (using PyTorch's implementation) implements
multi-iters gradient cumulating.
If you are using PyTorch >= 1.6, torch.cuda.amp is used as the backend,
to take care of the optimization procedure.
"""
def __init__(self, *args, **kwargs):
super(GradientCumulativeFp16OptimizerHook,
self).__init__(*args, **kwargs)
def after_train_iter(self, runner):
if not self.initialized:
self._init(runner)
if runner.iter < self.divisible_iters:
loss_factor = self.cumulative_iters
else:
loss_factor = self.remainder_iters
loss = runner.outputs['loss']
loss = loss / loss_factor
self.loss_scaler.scale(loss).backward()
if (self.every_n_iters(runner, self.cumulative_iters)
or self.is_last_iter(runner)):
# copy fp16 grads in the model to fp32 params in the optimizer
self.loss_scaler.unscale_(runner.optimizer)
if self.grad_clip is not None:
grad_norm = self.clip_grads(runner.model.parameters())
if grad_norm is not None:
# Add grad norm to the logger
runner.log_buffer.update(
{'grad_norm': float(grad_norm)},
runner.outputs['num_samples'])
# backward and update scaler
self.loss_scaler.step(runner.optimizer)
self.loss_scaler.update(self._scale_update_param)
# save state_dict of loss_scaler
runner.meta.setdefault(
'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict()
# clear grads
runner.model.zero_grad()
runner.optimizer.zero_grad()
else:
@HOOKS.register_module()
class Fp16OptimizerHook(OptimizerHook):
"""FP16 optimizer hook (mmcv's implementation).
The steps of fp16 optimizer is as follows.
1. Scale the loss value.
2. BP in the fp16 model.
2. Copy gradients from fp16 model to fp32 weights.
3. Update fp32 weights.
4. Copy updated parameters from fp32 weights to fp16 model.
Refer to https://arxiv.org/abs/1710.03740 for more details.
Args:
loss_scale (float | str | dict): Scale factor configuration.
If loss_scale is a float, static loss scaling will be used with
the specified scale. If loss_scale is a string, it must be
'dynamic', then dynamic loss scaling will be used.
It can also be a dict containing arguments of LossScaler.
Defaults to 512.
"""
def __init__(self,
grad_clip=None,
coalesce=True,
bucket_size_mb=-1,
loss_scale=512.,
distributed=True):
self.grad_clip = grad_clip
self.coalesce = coalesce
self.bucket_size_mb = bucket_size_mb
self.distributed = distributed
if loss_scale == 'dynamic':
self.loss_scaler = LossScaler(mode='dynamic')
elif isinstance(loss_scale, float):
self.loss_scaler = LossScaler(
init_scale=loss_scale, mode='static')
elif isinstance(loss_scale, dict):
self.loss_scaler = LossScaler(**loss_scale)
else:
raise ValueError('loss_scale must be of type float, dict, or '
f'"dynamic", got {loss_scale}')
def before_run(self, runner):
"""Preparing steps before Mixed Precision Training.
1. Make a master copy of fp32 weights for optimization.
2. Convert the main model from fp32 to fp16.
"""
# keep a copy of fp32 weights
old_groups = runner.optimizer.param_groups
runner.optimizer.param_groups = copy.deepcopy(
runner.optimizer.param_groups)
state = defaultdict(dict)
p_map = {
old_p: p
for old_p, p in zip(
chain(*(g['params'] for g in old_groups)),
chain(*(g['params']
for g in runner.optimizer.param_groups)))
}
for k, v in runner.optimizer.state.items():
state[p_map[k]] = v
runner.optimizer.state = state
# convert model to fp16
wrap_fp16_model(runner.model)
# resume from state dict
if 'fp16' in runner.meta and 'loss_scaler' in runner.meta['fp16']:
scaler_state_dict = runner.meta['fp16']['loss_scaler']
self.loss_scaler.load_state_dict(scaler_state_dict)
def copy_grads_to_fp32(self, fp16_net, fp32_weights):
"""Copy gradients from fp16 model to fp32 weight copy."""
for fp32_param, fp16_param in zip(fp32_weights,
fp16_net.parameters()):
if fp16_param.grad is not None:
if fp32_param.grad is None:
fp32_param.grad = fp32_param.data.new(
fp32_param.size())
fp32_param.grad.copy_(fp16_param.grad)
def copy_params_to_fp16(self, fp16_net, fp32_weights):
"""Copy updated params from fp32 weight copy to fp16 model."""
for fp16_param, fp32_param in zip(fp16_net.parameters(),
fp32_weights):
fp16_param.data.copy_(fp32_param.data)
def after_train_iter(self, runner):
"""Backward optimization steps for Mixed Precision Training. For
dynamic loss scaling, please refer `loss_scalar.py`
1. Scale the loss by a scale factor.
2. Backward the loss to obtain the gradients (fp16).
3. Copy gradients from the model to the fp32 weight copy.
4. Scale the gradients back and update the fp32 weight copy.
5. Copy back the params from fp32 weight copy to the fp16 model.
6. Save loss_scaler state_dict for resume purpose.
"""
# clear grads of last iteration
runner.model.zero_grad()
runner.optimizer.zero_grad()
# scale the loss value
scaled_loss = runner.outputs['loss'] * self.loss_scaler.loss_scale
scaled_loss.backward()
# copy fp16 grads in the model to fp32 params in the optimizer
fp32_weights = []
for param_group in runner.optimizer.param_groups:
fp32_weights += param_group['params']
self.copy_grads_to_fp32(runner.model, fp32_weights)
# allreduce grads
if self.distributed:
allreduce_grads(fp32_weights, self.coalesce,
self.bucket_size_mb)
has_overflow = self.loss_scaler.has_overflow(fp32_weights)
# if has overflow, skip this iteration
if not has_overflow:
# scale the gradients back
for param in fp32_weights:
if param.grad is not None:
param.grad.div_(self.loss_scaler.loss_scale)
if self.grad_clip is not None:
grad_norm = self.clip_grads(fp32_weights)
if grad_norm is not None:
# Add grad norm to the logger
runner.log_buffer.update(
{'grad_norm': float(grad_norm)},
runner.outputs['num_samples'])
# update fp32 params
runner.optimizer.step()
# copy fp32 params to the fp16 model
self.copy_params_to_fp16(runner.model, fp32_weights)
self.loss_scaler.update_scale(has_overflow)
if has_overflow:
runner.logger.warning('Check overflow, downscale loss scale '
f'to {self.loss_scaler.cur_scale}')
# save state_dict of loss_scaler
runner.meta.setdefault(
'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict()
@HOOKS.register_module()
class GradientCumulativeFp16OptimizerHook(GradientCumulativeOptimizerHook,
Fp16OptimizerHook):
"""Fp16 optimizer Hook (using mmcv implementation) implements multi-
iters gradient cumulating."""
def __init__(self, *args, **kwargs):
super(GradientCumulativeFp16OptimizerHook,
self).__init__(*args, **kwargs)
def after_train_iter(self, runner):
if not self.initialized:
self._init(runner)
if runner.iter < self.divisible_iters:
loss_factor = self.cumulative_iters
else:
loss_factor = self.remainder_iters
loss = runner.outputs['loss']
loss = loss / loss_factor
# scale the loss value
scaled_loss = loss * self.loss_scaler.loss_scale
scaled_loss.backward()
if (self.every_n_iters(runner, self.cumulative_iters)
or self.is_last_iter(runner)):
# copy fp16 grads in the model to fp32 params in the optimizer
fp32_weights = []
for param_group in runner.optimizer.param_groups:
fp32_weights += param_group['params']
self.copy_grads_to_fp32(runner.model, fp32_weights)
# allreduce grads
if self.distributed:
allreduce_grads(fp32_weights, self.coalesce,
self.bucket_size_mb)
has_overflow = self.loss_scaler.has_overflow(fp32_weights)
# if has overflow, skip this iteration
if not has_overflow:
# scale the gradients back
for param in fp32_weights:
if param.grad is not None:
param.grad.div_(self.loss_scaler.loss_scale)
if self.grad_clip is not None:
grad_norm = self.clip_grads(fp32_weights)
if grad_norm is not None:
# Add grad norm to the logger
runner.log_buffer.update(
{'grad_norm': float(grad_norm)},
runner.outputs['num_samples'])
# update fp32 params
runner.optimizer.step()
# copy fp32 params to the fp16 model
self.copy_params_to_fp16(runner.model, fp32_weights)
else:
runner.logger.warning(
'Check overflow, downscale loss scale '
f'to {self.loss_scaler.cur_scale}')
self.loss_scaler.update_scale(has_overflow)
# save state_dict of loss_scaler
runner.meta.setdefault(
'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict()
# clear grads
runner.model.zero_grad()
runner.optimizer.zero_grad()
|