init commit for huggingface
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +146 -0
- README.md +41 -0
- annotator/canny/__init__.py +6 -0
- annotator/ckpts/ckpts.txt +1 -0
- annotator/hed/__init__.py +132 -0
- annotator/midas/__init__.py +38 -0
- annotator/midas/api.py +169 -0
- annotator/midas/midas/__init__.py +0 -0
- annotator/midas/midas/base_model.py +16 -0
- annotator/midas/midas/blocks.py +342 -0
- annotator/midas/midas/dpt_depth.py +109 -0
- annotator/midas/midas/midas_net.py +76 -0
- annotator/midas/midas/midas_net_custom.py +128 -0
- annotator/midas/midas/transforms.py +234 -0
- annotator/midas/midas/vit.py +491 -0
- annotator/midas/utils.py +189 -0
- annotator/mlsd/__init__.py +39 -0
- annotator/mlsd/models/mbv2_mlsd_large.py +292 -0
- annotator/mlsd/models/mbv2_mlsd_tiny.py +275 -0
- annotator/mlsd/utils.py +580 -0
- annotator/openpose/__init__.py +44 -0
- annotator/openpose/body.py +219 -0
- annotator/openpose/hand.py +86 -0
- annotator/openpose/model.py +219 -0
- annotator/openpose/util.py +164 -0
- annotator/uniformer/__init__.py +23 -0
- annotator/uniformer/configs/_base_/datasets/ade20k.py +54 -0
- annotator/uniformer/configs/_base_/datasets/chase_db1.py +59 -0
- annotator/uniformer/configs/_base_/datasets/cityscapes.py +54 -0
- annotator/uniformer/configs/_base_/datasets/cityscapes_769x769.py +35 -0
- annotator/uniformer/configs/_base_/datasets/drive.py +59 -0
- annotator/uniformer/configs/_base_/datasets/hrf.py +59 -0
- annotator/uniformer/configs/_base_/datasets/pascal_context.py +60 -0
- annotator/uniformer/configs/_base_/datasets/pascal_context_59.py +60 -0
- annotator/uniformer/configs/_base_/datasets/pascal_voc12.py +57 -0
- annotator/uniformer/configs/_base_/datasets/pascal_voc12_aug.py +9 -0
- annotator/uniformer/configs/_base_/datasets/stare.py +59 -0
- annotator/uniformer/configs/_base_/default_runtime.py +14 -0
- annotator/uniformer/configs/_base_/models/ann_r50-d8.py +46 -0
- annotator/uniformer/configs/_base_/models/apcnet_r50-d8.py +44 -0
- annotator/uniformer/configs/_base_/models/ccnet_r50-d8.py +44 -0
- annotator/uniformer/configs/_base_/models/cgnet.py +35 -0
- annotator/uniformer/configs/_base_/models/danet_r50-d8.py +44 -0
- annotator/uniformer/configs/_base_/models/deeplabv3_r50-d8.py +44 -0
- annotator/uniformer/configs/_base_/models/deeplabv3_unet_s5-d16.py +50 -0
- annotator/uniformer/configs/_base_/models/deeplabv3plus_r50-d8.py +46 -0
- annotator/uniformer/configs/_base_/models/dmnet_r50-d8.py +44 -0
- annotator/uniformer/configs/_base_/models/dnl_r50-d8.py +46 -0
- annotator/uniformer/configs/_base_/models/emanet_r50-d8.py +47 -0
- annotator/uniformer/configs/_base_/models/encnet_r50-d8.py +48 -0
.gitignore
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.idea/
|
2 |
+
|
3 |
+
training/
|
4 |
+
lightning_logs/
|
5 |
+
image_log/
|
6 |
+
|
7 |
+
*.pth
|
8 |
+
*.pt
|
9 |
+
*.ckpt
|
10 |
+
*.safetensors
|
11 |
+
|
12 |
+
gradio_pose2image_private.py
|
13 |
+
gradio_canny2image_private.py
|
14 |
+
|
15 |
+
# Byte-compiled / optimized / DLL files
|
16 |
+
__pycache__/
|
17 |
+
*.py[cod]
|
18 |
+
*$py.class
|
19 |
+
|
20 |
+
# C extensions
|
21 |
+
*.so
|
22 |
+
|
23 |
+
# Distribution / packaging
|
24 |
+
.Python
|
25 |
+
build/
|
26 |
+
develop-eggs/
|
27 |
+
dist/
|
28 |
+
downloads/
|
29 |
+
eggs/
|
30 |
+
.eggs/
|
31 |
+
lib/
|
32 |
+
lib64/
|
33 |
+
parts/
|
34 |
+
sdist/
|
35 |
+
var/
|
36 |
+
wheels/
|
37 |
+
pip-wheel-metadata/
|
38 |
+
share/python-wheels/
|
39 |
+
*.egg-info/
|
40 |
+
.installed.cfg
|
41 |
+
*.egg
|
42 |
+
MANIFEST
|
43 |
+
|
44 |
+
# PyInstaller
|
45 |
+
# Usually these files are written by a python script from a template
|
46 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
47 |
+
*.manifest
|
48 |
+
*.spec
|
49 |
+
|
50 |
+
# Installer logs
|
51 |
+
pip-log.txt
|
52 |
+
pip-delete-this-directory.txt
|
53 |
+
|
54 |
+
# Unit test / coverage reports
|
55 |
+
htmlcov/
|
56 |
+
.tox/
|
57 |
+
.nox/
|
58 |
+
.coverage
|
59 |
+
.coverage.*
|
60 |
+
.cache
|
61 |
+
nosetests.xml
|
62 |
+
coverage.xml
|
63 |
+
*.cover
|
64 |
+
*.py,cover
|
65 |
+
.hypothesis/
|
66 |
+
.pytest_cache/
|
67 |
+
|
68 |
+
# Translations
|
69 |
+
*.mo
|
70 |
+
*.pot
|
71 |
+
|
72 |
+
# Django stuff:
|
73 |
+
*.log
|
74 |
+
local_settings.py
|
75 |
+
db.sqlite3
|
76 |
+
db.sqlite3-journal
|
77 |
+
|
78 |
+
# Flask stuff:
|
79 |
+
instance/
|
80 |
+
.webassets-cache
|
81 |
+
|
82 |
+
# Scrapy stuff:
|
83 |
+
.scrapy
|
84 |
+
|
85 |
+
# Sphinx documentation
|
86 |
+
docs/_build/
|
87 |
+
|
88 |
+
# PyBuilder
|
89 |
+
target/
|
90 |
+
|
91 |
+
# Jupyter Notebook
|
92 |
+
.ipynb_checkpoints
|
93 |
+
|
94 |
+
# IPython
|
95 |
+
profile_default/
|
96 |
+
ipython_config.py
|
97 |
+
|
98 |
+
# pyenv
|
99 |
+
.python-version
|
100 |
+
|
101 |
+
# pipenv
|
102 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
103 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
104 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
105 |
+
# install all needed dependencies.
|
106 |
+
#Pipfile.lock
|
107 |
+
|
108 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
109 |
+
__pypackages__/
|
110 |
+
|
111 |
+
# Celery stuff
|
112 |
+
celerybeat-schedule
|
113 |
+
celerybeat.pid
|
114 |
+
|
115 |
+
# SageMath parsed files
|
116 |
+
*.sage.py
|
117 |
+
|
118 |
+
# Environments
|
119 |
+
.env
|
120 |
+
.venv
|
121 |
+
env/
|
122 |
+
venv/
|
123 |
+
ENV/
|
124 |
+
env.bak/
|
125 |
+
venv.bak/
|
126 |
+
|
127 |
+
# Spyder project settings
|
128 |
+
.spyderproject
|
129 |
+
.spyproject
|
130 |
+
|
131 |
+
# Rope project settings
|
132 |
+
.ropeproject
|
133 |
+
|
134 |
+
# mkdocs documentation
|
135 |
+
/site
|
136 |
+
|
137 |
+
# mypy
|
138 |
+
.mypy_cache/
|
139 |
+
.dmypy.json
|
140 |
+
dmypy.json
|
141 |
+
|
142 |
+
# Pyre type checker
|
143 |
+
.pyre/
|
144 |
+
|
145 |
+
# dlib
|
146 |
+
**/*.dat
|
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Face landmark ControlNet
|
2 |
+
|
3 |
+
## ControlNet with Face landmark
|
4 |
+
|
5 |
+
I trained using [ControlNet](https://github.com/lllyasviel/ControlNet), which was proposed by lllyasviel, on a face dataset. By using facial landmarks as a condition, finer face control can be achieved.
|
6 |
+
|
7 |
+
Currently, I’m using Stable Diffusion 1.5 as the base model and dlib as the face landmark detector (those with the capability can replace it with a better one). The checkpoint will be released soon.
|
8 |
+
|
9 |
+
**Create conda environment:**
|
10 |
+
|
11 |
+
```sh
|
12 |
+
conda env create -f environment.yaml
|
13 |
+
conda activate control
|
14 |
+
wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
|
15 |
+
bzip2 -d shape_predictor_68_face_landmarks.dat.bz2
|
16 |
+
```
|
17 |
+
|
18 |
+
**Testing it by:**
|
19 |
+
|
20 |
+
```
|
21 |
+
python gradio_landmark2image.py
|
22 |
+
```
|
23 |
+
|
24 |
+
## Generate face with the identical poses and expression
|
25 |
+
|
26 |
+
To create a new face, input an image and extract the facial landmarks from it. These landmarks will be used as a reference to redraw the face while ensuring that the original features are retained.
|
27 |
+
|
28 |
+
![Generate face with the identical poses and expression](./assets/Generatefacewiththeidenticalposesandexpression.png)
|
29 |
+
|
30 |
+
## Control the facial expressions and poses of generated images
|
31 |
+
|
32 |
+
For the images we generated, we have the prompt and random seed used to generate them. While keeping the prompt and random seed, we can also edit the landmarks to modify the facial expressions and postures of the generated results.
|
33 |
+
|
34 |
+
![Controlthefacialexpressionsandposesofgeneratedimages](./assets/Controlthefacialexpressionsandposesofgeneratedimages.png)
|
35 |
+
|
36 |
+
## Credits
|
37 |
+
|
38 |
+
**Thanks to lllyasviel for his amazing work on [https://github.com/lllyasviel/ControlNet](https://github.com/lllyasviel/ControlNet)!, this is totaly based on his work.**
|
39 |
+
|
40 |
+
**This is just a proof of concept and should not be applied for any risky purposes.**
|
41 |
+
|
annotator/canny/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
|
3 |
+
|
4 |
+
class CannyDetector:
|
5 |
+
def __call__(self, img, low_threshold, high_threshold):
|
6 |
+
return cv2.Canny(img, low_threshold, high_threshold)
|
annotator/ckpts/ckpts.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Weights here.
|
annotator/hed/__init__.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
from einops import rearrange
|
6 |
+
from annotator.util import annotator_ckpts_path
|
7 |
+
|
8 |
+
|
9 |
+
class Network(torch.nn.Module):
|
10 |
+
def __init__(self, model_path):
|
11 |
+
super().__init__()
|
12 |
+
|
13 |
+
self.netVggOne = torch.nn.Sequential(
|
14 |
+
torch.nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1),
|
15 |
+
torch.nn.ReLU(inplace=False),
|
16 |
+
torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
|
17 |
+
torch.nn.ReLU(inplace=False)
|
18 |
+
)
|
19 |
+
|
20 |
+
self.netVggTwo = torch.nn.Sequential(
|
21 |
+
torch.nn.MaxPool2d(kernel_size=2, stride=2),
|
22 |
+
torch.nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
|
23 |
+
torch.nn.ReLU(inplace=False),
|
24 |
+
torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
|
25 |
+
torch.nn.ReLU(inplace=False)
|
26 |
+
)
|
27 |
+
|
28 |
+
self.netVggThr = torch.nn.Sequential(
|
29 |
+
torch.nn.MaxPool2d(kernel_size=2, stride=2),
|
30 |
+
torch.nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
|
31 |
+
torch.nn.ReLU(inplace=False),
|
32 |
+
torch.nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
|
33 |
+
torch.nn.ReLU(inplace=False),
|
34 |
+
torch.nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
|
35 |
+
torch.nn.ReLU(inplace=False)
|
36 |
+
)
|
37 |
+
|
38 |
+
self.netVggFou = torch.nn.Sequential(
|
39 |
+
torch.nn.MaxPool2d(kernel_size=2, stride=2),
|
40 |
+
torch.nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1),
|
41 |
+
torch.nn.ReLU(inplace=False),
|
42 |
+
torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
|
43 |
+
torch.nn.ReLU(inplace=False),
|
44 |
+
torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
|
45 |
+
torch.nn.ReLU(inplace=False)
|
46 |
+
)
|
47 |
+
|
48 |
+
self.netVggFiv = torch.nn.Sequential(
|
49 |
+
torch.nn.MaxPool2d(kernel_size=2, stride=2),
|
50 |
+
torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
|
51 |
+
torch.nn.ReLU(inplace=False),
|
52 |
+
torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
|
53 |
+
torch.nn.ReLU(inplace=False),
|
54 |
+
torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
|
55 |
+
torch.nn.ReLU(inplace=False)
|
56 |
+
)
|
57 |
+
|
58 |
+
self.netScoreOne = torch.nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0)
|
59 |
+
self.netScoreTwo = torch.nn.Conv2d(in_channels=128, out_channels=1, kernel_size=1, stride=1, padding=0)
|
60 |
+
self.netScoreThr = torch.nn.Conv2d(in_channels=256, out_channels=1, kernel_size=1, stride=1, padding=0)
|
61 |
+
self.netScoreFou = torch.nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1, stride=1, padding=0)
|
62 |
+
self.netScoreFiv = torch.nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1, stride=1, padding=0)
|
63 |
+
|
64 |
+
self.netCombine = torch.nn.Sequential(
|
65 |
+
torch.nn.Conv2d(in_channels=5, out_channels=1, kernel_size=1, stride=1, padding=0),
|
66 |
+
torch.nn.Sigmoid()
|
67 |
+
)
|
68 |
+
|
69 |
+
self.load_state_dict({strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.load(model_path).items()})
|
70 |
+
|
71 |
+
def forward(self, tenInput):
|
72 |
+
tenInput = tenInput * 255.0
|
73 |
+
tenInput = tenInput - torch.tensor(data=[104.00698793, 116.66876762, 122.67891434], dtype=tenInput.dtype, device=tenInput.device).view(1, 3, 1, 1)
|
74 |
+
|
75 |
+
tenVggOne = self.netVggOne(tenInput)
|
76 |
+
tenVggTwo = self.netVggTwo(tenVggOne)
|
77 |
+
tenVggThr = self.netVggThr(tenVggTwo)
|
78 |
+
tenVggFou = self.netVggFou(tenVggThr)
|
79 |
+
tenVggFiv = self.netVggFiv(tenVggFou)
|
80 |
+
|
81 |
+
tenScoreOne = self.netScoreOne(tenVggOne)
|
82 |
+
tenScoreTwo = self.netScoreTwo(tenVggTwo)
|
83 |
+
tenScoreThr = self.netScoreThr(tenVggThr)
|
84 |
+
tenScoreFou = self.netScoreFou(tenVggFou)
|
85 |
+
tenScoreFiv = self.netScoreFiv(tenVggFiv)
|
86 |
+
|
87 |
+
tenScoreOne = torch.nn.functional.interpolate(input=tenScoreOne, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
|
88 |
+
tenScoreTwo = torch.nn.functional.interpolate(input=tenScoreTwo, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
|
89 |
+
tenScoreThr = torch.nn.functional.interpolate(input=tenScoreThr, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
|
90 |
+
tenScoreFou = torch.nn.functional.interpolate(input=tenScoreFou, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
|
91 |
+
tenScoreFiv = torch.nn.functional.interpolate(input=tenScoreFiv, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
|
92 |
+
|
93 |
+
return self.netCombine(torch.cat([ tenScoreOne, tenScoreTwo, tenScoreThr, tenScoreFou, tenScoreFiv ], 1))
|
94 |
+
|
95 |
+
|
96 |
+
class HEDdetector:
|
97 |
+
def __init__(self):
|
98 |
+
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/network-bsds500.pth"
|
99 |
+
modelpath = os.path.join(annotator_ckpts_path, "network-bsds500.pth")
|
100 |
+
if not os.path.exists(modelpath):
|
101 |
+
from basicsr.utils.download_util import load_file_from_url
|
102 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
103 |
+
self.netNetwork = Network(modelpath).cuda().eval()
|
104 |
+
|
105 |
+
def __call__(self, input_image):
|
106 |
+
assert input_image.ndim == 3
|
107 |
+
input_image = input_image[:, :, ::-1].copy()
|
108 |
+
with torch.no_grad():
|
109 |
+
image_hed = torch.from_numpy(input_image).float().cuda()
|
110 |
+
image_hed = image_hed / 255.0
|
111 |
+
image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
|
112 |
+
edge = self.netNetwork(image_hed)[0]
|
113 |
+
edge = (edge.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
|
114 |
+
return edge[0]
|
115 |
+
|
116 |
+
|
117 |
+
def nms(x, t, s):
|
118 |
+
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
|
119 |
+
|
120 |
+
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
121 |
+
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
122 |
+
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
123 |
+
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
124 |
+
|
125 |
+
y = np.zeros_like(x)
|
126 |
+
|
127 |
+
for f in [f1, f2, f3, f4]:
|
128 |
+
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
129 |
+
|
130 |
+
z = np.zeros_like(y, dtype=np.uint8)
|
131 |
+
z[y > t] = 255
|
132 |
+
return z
|
annotator/midas/__init__.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from einops import rearrange
|
6 |
+
from .api import MiDaSInference
|
7 |
+
|
8 |
+
|
9 |
+
class MidasDetector:
|
10 |
+
def __init__(self):
|
11 |
+
self.model = MiDaSInference(model_type="dpt_hybrid").cuda()
|
12 |
+
|
13 |
+
def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1):
|
14 |
+
assert input_image.ndim == 3
|
15 |
+
image_depth = input_image
|
16 |
+
with torch.no_grad():
|
17 |
+
image_depth = torch.from_numpy(image_depth).float().cuda()
|
18 |
+
image_depth = image_depth / 127.5 - 1.0
|
19 |
+
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
|
20 |
+
depth = self.model(image_depth)[0]
|
21 |
+
|
22 |
+
depth_pt = depth.clone()
|
23 |
+
depth_pt -= torch.min(depth_pt)
|
24 |
+
depth_pt /= torch.max(depth_pt)
|
25 |
+
depth_pt = depth_pt.cpu().numpy()
|
26 |
+
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
|
27 |
+
|
28 |
+
depth_np = depth.cpu().numpy()
|
29 |
+
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
|
30 |
+
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
|
31 |
+
z = np.ones_like(x) * a
|
32 |
+
x[depth_pt < bg_th] = 0
|
33 |
+
y[depth_pt < bg_th] = 0
|
34 |
+
normal = np.stack([x, y, z], axis=2)
|
35 |
+
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
|
36 |
+
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
37 |
+
|
38 |
+
return depth_image, normal_image
|
annotator/midas/api.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# based on https://github.com/isl-org/MiDaS
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torchvision.transforms import Compose
|
8 |
+
|
9 |
+
from .midas.dpt_depth import DPTDepthModel
|
10 |
+
from .midas.midas_net import MidasNet
|
11 |
+
from .midas.midas_net_custom import MidasNet_small
|
12 |
+
from .midas.transforms import Resize, NormalizeImage, PrepareForNet
|
13 |
+
from annotator.util import annotator_ckpts_path
|
14 |
+
|
15 |
+
|
16 |
+
ISL_PATHS = {
|
17 |
+
"dpt_large": os.path.join(annotator_ckpts_path, "dpt_large-midas-2f21e586.pt"),
|
18 |
+
"dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"),
|
19 |
+
"midas_v21": "",
|
20 |
+
"midas_v21_small": "",
|
21 |
+
}
|
22 |
+
|
23 |
+
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
|
24 |
+
|
25 |
+
|
26 |
+
def disabled_train(self, mode=True):
|
27 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
28 |
+
does not change anymore."""
|
29 |
+
return self
|
30 |
+
|
31 |
+
|
32 |
+
def load_midas_transform(model_type):
|
33 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
34 |
+
# load transform only
|
35 |
+
if model_type == "dpt_large": # DPT-Large
|
36 |
+
net_w, net_h = 384, 384
|
37 |
+
resize_mode = "minimal"
|
38 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
39 |
+
|
40 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
41 |
+
net_w, net_h = 384, 384
|
42 |
+
resize_mode = "minimal"
|
43 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
44 |
+
|
45 |
+
elif model_type == "midas_v21":
|
46 |
+
net_w, net_h = 384, 384
|
47 |
+
resize_mode = "upper_bound"
|
48 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
49 |
+
|
50 |
+
elif model_type == "midas_v21_small":
|
51 |
+
net_w, net_h = 256, 256
|
52 |
+
resize_mode = "upper_bound"
|
53 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
54 |
+
|
55 |
+
else:
|
56 |
+
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
57 |
+
|
58 |
+
transform = Compose(
|
59 |
+
[
|
60 |
+
Resize(
|
61 |
+
net_w,
|
62 |
+
net_h,
|
63 |
+
resize_target=None,
|
64 |
+
keep_aspect_ratio=True,
|
65 |
+
ensure_multiple_of=32,
|
66 |
+
resize_method=resize_mode,
|
67 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
68 |
+
),
|
69 |
+
normalization,
|
70 |
+
PrepareForNet(),
|
71 |
+
]
|
72 |
+
)
|
73 |
+
|
74 |
+
return transform
|
75 |
+
|
76 |
+
|
77 |
+
def load_model(model_type):
|
78 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
79 |
+
# load network
|
80 |
+
model_path = ISL_PATHS[model_type]
|
81 |
+
if model_type == "dpt_large": # DPT-Large
|
82 |
+
model = DPTDepthModel(
|
83 |
+
path=model_path,
|
84 |
+
backbone="vitl16_384",
|
85 |
+
non_negative=True,
|
86 |
+
)
|
87 |
+
net_w, net_h = 384, 384
|
88 |
+
resize_mode = "minimal"
|
89 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
90 |
+
|
91 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
92 |
+
if not os.path.exists(model_path):
|
93 |
+
from basicsr.utils.download_util import load_file_from_url
|
94 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
95 |
+
|
96 |
+
model = DPTDepthModel(
|
97 |
+
path=model_path,
|
98 |
+
backbone="vitb_rn50_384",
|
99 |
+
non_negative=True,
|
100 |
+
)
|
101 |
+
net_w, net_h = 384, 384
|
102 |
+
resize_mode = "minimal"
|
103 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
104 |
+
|
105 |
+
elif model_type == "midas_v21":
|
106 |
+
model = MidasNet(model_path, non_negative=True)
|
107 |
+
net_w, net_h = 384, 384
|
108 |
+
resize_mode = "upper_bound"
|
109 |
+
normalization = NormalizeImage(
|
110 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
111 |
+
)
|
112 |
+
|
113 |
+
elif model_type == "midas_v21_small":
|
114 |
+
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
115 |
+
non_negative=True, blocks={'expand': True})
|
116 |
+
net_w, net_h = 256, 256
|
117 |
+
resize_mode = "upper_bound"
|
118 |
+
normalization = NormalizeImage(
|
119 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
120 |
+
)
|
121 |
+
|
122 |
+
else:
|
123 |
+
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
124 |
+
assert False
|
125 |
+
|
126 |
+
transform = Compose(
|
127 |
+
[
|
128 |
+
Resize(
|
129 |
+
net_w,
|
130 |
+
net_h,
|
131 |
+
resize_target=None,
|
132 |
+
keep_aspect_ratio=True,
|
133 |
+
ensure_multiple_of=32,
|
134 |
+
resize_method=resize_mode,
|
135 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
136 |
+
),
|
137 |
+
normalization,
|
138 |
+
PrepareForNet(),
|
139 |
+
]
|
140 |
+
)
|
141 |
+
|
142 |
+
return model.eval(), transform
|
143 |
+
|
144 |
+
|
145 |
+
class MiDaSInference(nn.Module):
|
146 |
+
MODEL_TYPES_TORCH_HUB = [
|
147 |
+
"DPT_Large",
|
148 |
+
"DPT_Hybrid",
|
149 |
+
"MiDaS_small"
|
150 |
+
]
|
151 |
+
MODEL_TYPES_ISL = [
|
152 |
+
"dpt_large",
|
153 |
+
"dpt_hybrid",
|
154 |
+
"midas_v21",
|
155 |
+
"midas_v21_small",
|
156 |
+
]
|
157 |
+
|
158 |
+
def __init__(self, model_type):
|
159 |
+
super().__init__()
|
160 |
+
assert (model_type in self.MODEL_TYPES_ISL)
|
161 |
+
model, _ = load_model(model_type)
|
162 |
+
self.model = model
|
163 |
+
self.model.train = disabled_train
|
164 |
+
|
165 |
+
def forward(self, x):
|
166 |
+
with torch.no_grad():
|
167 |
+
prediction = self.model(x)
|
168 |
+
return prediction
|
169 |
+
|
annotator/midas/midas/__init__.py
ADDED
File without changes
|
annotator/midas/midas/base_model.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class BaseModel(torch.nn.Module):
|
5 |
+
def load(self, path):
|
6 |
+
"""Load model from file.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
path (str): file path
|
10 |
+
"""
|
11 |
+
parameters = torch.load(path, map_location=torch.device('cpu'))
|
12 |
+
|
13 |
+
if "optimizer" in parameters:
|
14 |
+
parameters = parameters["model"]
|
15 |
+
|
16 |
+
self.load_state_dict(parameters)
|
annotator/midas/midas/blocks.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .vit import (
|
5 |
+
_make_pretrained_vitb_rn50_384,
|
6 |
+
_make_pretrained_vitl16_384,
|
7 |
+
_make_pretrained_vitb16_384,
|
8 |
+
forward_vit,
|
9 |
+
)
|
10 |
+
|
11 |
+
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
|
12 |
+
if backbone == "vitl16_384":
|
13 |
+
pretrained = _make_pretrained_vitl16_384(
|
14 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
15 |
+
)
|
16 |
+
scratch = _make_scratch(
|
17 |
+
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
18 |
+
) # ViT-L/16 - 85.0% Top1 (backbone)
|
19 |
+
elif backbone == "vitb_rn50_384":
|
20 |
+
pretrained = _make_pretrained_vitb_rn50_384(
|
21 |
+
use_pretrained,
|
22 |
+
hooks=hooks,
|
23 |
+
use_vit_only=use_vit_only,
|
24 |
+
use_readout=use_readout,
|
25 |
+
)
|
26 |
+
scratch = _make_scratch(
|
27 |
+
[256, 512, 768, 768], features, groups=groups, expand=expand
|
28 |
+
) # ViT-H/16 - 85.0% Top1 (backbone)
|
29 |
+
elif backbone == "vitb16_384":
|
30 |
+
pretrained = _make_pretrained_vitb16_384(
|
31 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
32 |
+
)
|
33 |
+
scratch = _make_scratch(
|
34 |
+
[96, 192, 384, 768], features, groups=groups, expand=expand
|
35 |
+
) # ViT-B/16 - 84.6% Top1 (backbone)
|
36 |
+
elif backbone == "resnext101_wsl":
|
37 |
+
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
38 |
+
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
|
39 |
+
elif backbone == "efficientnet_lite3":
|
40 |
+
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
|
41 |
+
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
|
42 |
+
else:
|
43 |
+
print(f"Backbone '{backbone}' not implemented")
|
44 |
+
assert False
|
45 |
+
|
46 |
+
return pretrained, scratch
|
47 |
+
|
48 |
+
|
49 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
50 |
+
scratch = nn.Module()
|
51 |
+
|
52 |
+
out_shape1 = out_shape
|
53 |
+
out_shape2 = out_shape
|
54 |
+
out_shape3 = out_shape
|
55 |
+
out_shape4 = out_shape
|
56 |
+
if expand==True:
|
57 |
+
out_shape1 = out_shape
|
58 |
+
out_shape2 = out_shape*2
|
59 |
+
out_shape3 = out_shape*4
|
60 |
+
out_shape4 = out_shape*8
|
61 |
+
|
62 |
+
scratch.layer1_rn = nn.Conv2d(
|
63 |
+
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
64 |
+
)
|
65 |
+
scratch.layer2_rn = nn.Conv2d(
|
66 |
+
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
67 |
+
)
|
68 |
+
scratch.layer3_rn = nn.Conv2d(
|
69 |
+
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
70 |
+
)
|
71 |
+
scratch.layer4_rn = nn.Conv2d(
|
72 |
+
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
73 |
+
)
|
74 |
+
|
75 |
+
return scratch
|
76 |
+
|
77 |
+
|
78 |
+
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
|
79 |
+
efficientnet = torch.hub.load(
|
80 |
+
"rwightman/gen-efficientnet-pytorch",
|
81 |
+
"tf_efficientnet_lite3",
|
82 |
+
pretrained=use_pretrained,
|
83 |
+
exportable=exportable
|
84 |
+
)
|
85 |
+
return _make_efficientnet_backbone(efficientnet)
|
86 |
+
|
87 |
+
|
88 |
+
def _make_efficientnet_backbone(effnet):
|
89 |
+
pretrained = nn.Module()
|
90 |
+
|
91 |
+
pretrained.layer1 = nn.Sequential(
|
92 |
+
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
|
93 |
+
)
|
94 |
+
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
|
95 |
+
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
|
96 |
+
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
|
97 |
+
|
98 |
+
return pretrained
|
99 |
+
|
100 |
+
|
101 |
+
def _make_resnet_backbone(resnet):
|
102 |
+
pretrained = nn.Module()
|
103 |
+
pretrained.layer1 = nn.Sequential(
|
104 |
+
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
105 |
+
)
|
106 |
+
|
107 |
+
pretrained.layer2 = resnet.layer2
|
108 |
+
pretrained.layer3 = resnet.layer3
|
109 |
+
pretrained.layer4 = resnet.layer4
|
110 |
+
|
111 |
+
return pretrained
|
112 |
+
|
113 |
+
|
114 |
+
def _make_pretrained_resnext101_wsl(use_pretrained):
|
115 |
+
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
116 |
+
return _make_resnet_backbone(resnet)
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
class Interpolate(nn.Module):
|
121 |
+
"""Interpolation module.
|
122 |
+
"""
|
123 |
+
|
124 |
+
def __init__(self, scale_factor, mode, align_corners=False):
|
125 |
+
"""Init.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
scale_factor (float): scaling
|
129 |
+
mode (str): interpolation mode
|
130 |
+
"""
|
131 |
+
super(Interpolate, self).__init__()
|
132 |
+
|
133 |
+
self.interp = nn.functional.interpolate
|
134 |
+
self.scale_factor = scale_factor
|
135 |
+
self.mode = mode
|
136 |
+
self.align_corners = align_corners
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
"""Forward pass.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
x (tensor): input
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
tensor: interpolated data
|
146 |
+
"""
|
147 |
+
|
148 |
+
x = self.interp(
|
149 |
+
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
|
150 |
+
)
|
151 |
+
|
152 |
+
return x
|
153 |
+
|
154 |
+
|
155 |
+
class ResidualConvUnit(nn.Module):
|
156 |
+
"""Residual convolution module.
|
157 |
+
"""
|
158 |
+
|
159 |
+
def __init__(self, features):
|
160 |
+
"""Init.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
features (int): number of features
|
164 |
+
"""
|
165 |
+
super().__init__()
|
166 |
+
|
167 |
+
self.conv1 = nn.Conv2d(
|
168 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
169 |
+
)
|
170 |
+
|
171 |
+
self.conv2 = nn.Conv2d(
|
172 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
173 |
+
)
|
174 |
+
|
175 |
+
self.relu = nn.ReLU(inplace=True)
|
176 |
+
|
177 |
+
def forward(self, x):
|
178 |
+
"""Forward pass.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
x (tensor): input
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
tensor: output
|
185 |
+
"""
|
186 |
+
out = self.relu(x)
|
187 |
+
out = self.conv1(out)
|
188 |
+
out = self.relu(out)
|
189 |
+
out = self.conv2(out)
|
190 |
+
|
191 |
+
return out + x
|
192 |
+
|
193 |
+
|
194 |
+
class FeatureFusionBlock(nn.Module):
|
195 |
+
"""Feature fusion block.
|
196 |
+
"""
|
197 |
+
|
198 |
+
def __init__(self, features):
|
199 |
+
"""Init.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
features (int): number of features
|
203 |
+
"""
|
204 |
+
super(FeatureFusionBlock, self).__init__()
|
205 |
+
|
206 |
+
self.resConfUnit1 = ResidualConvUnit(features)
|
207 |
+
self.resConfUnit2 = ResidualConvUnit(features)
|
208 |
+
|
209 |
+
def forward(self, *xs):
|
210 |
+
"""Forward pass.
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
tensor: output
|
214 |
+
"""
|
215 |
+
output = xs[0]
|
216 |
+
|
217 |
+
if len(xs) == 2:
|
218 |
+
output += self.resConfUnit1(xs[1])
|
219 |
+
|
220 |
+
output = self.resConfUnit2(output)
|
221 |
+
|
222 |
+
output = nn.functional.interpolate(
|
223 |
+
output, scale_factor=2, mode="bilinear", align_corners=True
|
224 |
+
)
|
225 |
+
|
226 |
+
return output
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
class ResidualConvUnit_custom(nn.Module):
|
232 |
+
"""Residual convolution module.
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(self, features, activation, bn):
|
236 |
+
"""Init.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
features (int): number of features
|
240 |
+
"""
|
241 |
+
super().__init__()
|
242 |
+
|
243 |
+
self.bn = bn
|
244 |
+
|
245 |
+
self.groups=1
|
246 |
+
|
247 |
+
self.conv1 = nn.Conv2d(
|
248 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
249 |
+
)
|
250 |
+
|
251 |
+
self.conv2 = nn.Conv2d(
|
252 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
253 |
+
)
|
254 |
+
|
255 |
+
if self.bn==True:
|
256 |
+
self.bn1 = nn.BatchNorm2d(features)
|
257 |
+
self.bn2 = nn.BatchNorm2d(features)
|
258 |
+
|
259 |
+
self.activation = activation
|
260 |
+
|
261 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
262 |
+
|
263 |
+
def forward(self, x):
|
264 |
+
"""Forward pass.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
x (tensor): input
|
268 |
+
|
269 |
+
Returns:
|
270 |
+
tensor: output
|
271 |
+
"""
|
272 |
+
|
273 |
+
out = self.activation(x)
|
274 |
+
out = self.conv1(out)
|
275 |
+
if self.bn==True:
|
276 |
+
out = self.bn1(out)
|
277 |
+
|
278 |
+
out = self.activation(out)
|
279 |
+
out = self.conv2(out)
|
280 |
+
if self.bn==True:
|
281 |
+
out = self.bn2(out)
|
282 |
+
|
283 |
+
if self.groups > 1:
|
284 |
+
out = self.conv_merge(out)
|
285 |
+
|
286 |
+
return self.skip_add.add(out, x)
|
287 |
+
|
288 |
+
# return out + x
|
289 |
+
|
290 |
+
|
291 |
+
class FeatureFusionBlock_custom(nn.Module):
|
292 |
+
"""Feature fusion block.
|
293 |
+
"""
|
294 |
+
|
295 |
+
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
|
296 |
+
"""Init.
|
297 |
+
|
298 |
+
Args:
|
299 |
+
features (int): number of features
|
300 |
+
"""
|
301 |
+
super(FeatureFusionBlock_custom, self).__init__()
|
302 |
+
|
303 |
+
self.deconv = deconv
|
304 |
+
self.align_corners = align_corners
|
305 |
+
|
306 |
+
self.groups=1
|
307 |
+
|
308 |
+
self.expand = expand
|
309 |
+
out_features = features
|
310 |
+
if self.expand==True:
|
311 |
+
out_features = features//2
|
312 |
+
|
313 |
+
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
314 |
+
|
315 |
+
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
316 |
+
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
317 |
+
|
318 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
319 |
+
|
320 |
+
def forward(self, *xs):
|
321 |
+
"""Forward pass.
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
tensor: output
|
325 |
+
"""
|
326 |
+
output = xs[0]
|
327 |
+
|
328 |
+
if len(xs) == 2:
|
329 |
+
res = self.resConfUnit1(xs[1])
|
330 |
+
output = self.skip_add.add(output, res)
|
331 |
+
# output += res
|
332 |
+
|
333 |
+
output = self.resConfUnit2(output)
|
334 |
+
|
335 |
+
output = nn.functional.interpolate(
|
336 |
+
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
337 |
+
)
|
338 |
+
|
339 |
+
output = self.out_conv(output)
|
340 |
+
|
341 |
+
return output
|
342 |
+
|
annotator/midas/midas/dpt_depth.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from .base_model import BaseModel
|
6 |
+
from .blocks import (
|
7 |
+
FeatureFusionBlock,
|
8 |
+
FeatureFusionBlock_custom,
|
9 |
+
Interpolate,
|
10 |
+
_make_encoder,
|
11 |
+
forward_vit,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
def _make_fusion_block(features, use_bn):
|
16 |
+
return FeatureFusionBlock_custom(
|
17 |
+
features,
|
18 |
+
nn.ReLU(False),
|
19 |
+
deconv=False,
|
20 |
+
bn=use_bn,
|
21 |
+
expand=False,
|
22 |
+
align_corners=True,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class DPT(BaseModel):
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
head,
|
30 |
+
features=256,
|
31 |
+
backbone="vitb_rn50_384",
|
32 |
+
readout="project",
|
33 |
+
channels_last=False,
|
34 |
+
use_bn=False,
|
35 |
+
):
|
36 |
+
|
37 |
+
super(DPT, self).__init__()
|
38 |
+
|
39 |
+
self.channels_last = channels_last
|
40 |
+
|
41 |
+
hooks = {
|
42 |
+
"vitb_rn50_384": [0, 1, 8, 11],
|
43 |
+
"vitb16_384": [2, 5, 8, 11],
|
44 |
+
"vitl16_384": [5, 11, 17, 23],
|
45 |
+
}
|
46 |
+
|
47 |
+
# Instantiate backbone and reassemble blocks
|
48 |
+
self.pretrained, self.scratch = _make_encoder(
|
49 |
+
backbone,
|
50 |
+
features,
|
51 |
+
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
52 |
+
groups=1,
|
53 |
+
expand=False,
|
54 |
+
exportable=False,
|
55 |
+
hooks=hooks[backbone],
|
56 |
+
use_readout=readout,
|
57 |
+
)
|
58 |
+
|
59 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
60 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
61 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
62 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
63 |
+
|
64 |
+
self.scratch.output_conv = head
|
65 |
+
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
if self.channels_last == True:
|
69 |
+
x.contiguous(memory_format=torch.channels_last)
|
70 |
+
|
71 |
+
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
72 |
+
|
73 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
74 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
75 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
76 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
77 |
+
|
78 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
79 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
80 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
81 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
82 |
+
|
83 |
+
out = self.scratch.output_conv(path_1)
|
84 |
+
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
class DPTDepthModel(DPT):
|
89 |
+
def __init__(self, path=None, non_negative=True, **kwargs):
|
90 |
+
features = kwargs["features"] if "features" in kwargs else 256
|
91 |
+
|
92 |
+
head = nn.Sequential(
|
93 |
+
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
94 |
+
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
95 |
+
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
96 |
+
nn.ReLU(True),
|
97 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
98 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
99 |
+
nn.Identity(),
|
100 |
+
)
|
101 |
+
|
102 |
+
super().__init__(head, **kwargs)
|
103 |
+
|
104 |
+
if path is not None:
|
105 |
+
self.load(path)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
return super().forward(x).squeeze(dim=1)
|
109 |
+
|
annotator/midas/midas/midas_net.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet(BaseModel):
|
13 |
+
"""Network for monocular depth estimation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path=None, features=256, non_negative=True):
|
17 |
+
"""Init.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
path (str, optional): Path to saved model. Defaults to None.
|
21 |
+
features (int, optional): Number of features. Defaults to 256.
|
22 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
23 |
+
"""
|
24 |
+
print("Loading weights: ", path)
|
25 |
+
|
26 |
+
super(MidasNet, self).__init__()
|
27 |
+
|
28 |
+
use_pretrained = False if path is None else True
|
29 |
+
|
30 |
+
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
|
31 |
+
|
32 |
+
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
33 |
+
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
34 |
+
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
35 |
+
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
36 |
+
|
37 |
+
self.scratch.output_conv = nn.Sequential(
|
38 |
+
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
39 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
40 |
+
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
41 |
+
nn.ReLU(True),
|
42 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
43 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
44 |
+
)
|
45 |
+
|
46 |
+
if path:
|
47 |
+
self.load(path)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
"""Forward pass.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
x (tensor): input data (image)
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
tensor: depth
|
57 |
+
"""
|
58 |
+
|
59 |
+
layer_1 = self.pretrained.layer1(x)
|
60 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
61 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
62 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
63 |
+
|
64 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
65 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
66 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
67 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
68 |
+
|
69 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
70 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
71 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
72 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
73 |
+
|
74 |
+
out = self.scratch.output_conv(path_1)
|
75 |
+
|
76 |
+
return torch.squeeze(out, dim=1)
|
annotator/midas/midas/midas_net_custom.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet_small(BaseModel):
|
13 |
+
"""Network for monocular depth estimation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
|
17 |
+
blocks={'expand': True}):
|
18 |
+
"""Init.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
path (str, optional): Path to saved model. Defaults to None.
|
22 |
+
features (int, optional): Number of features. Defaults to 256.
|
23 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
24 |
+
"""
|
25 |
+
print("Loading weights: ", path)
|
26 |
+
|
27 |
+
super(MidasNet_small, self).__init__()
|
28 |
+
|
29 |
+
use_pretrained = False if path else True
|
30 |
+
|
31 |
+
self.channels_last = channels_last
|
32 |
+
self.blocks = blocks
|
33 |
+
self.backbone = backbone
|
34 |
+
|
35 |
+
self.groups = 1
|
36 |
+
|
37 |
+
features1=features
|
38 |
+
features2=features
|
39 |
+
features3=features
|
40 |
+
features4=features
|
41 |
+
self.expand = False
|
42 |
+
if "expand" in self.blocks and self.blocks['expand'] == True:
|
43 |
+
self.expand = True
|
44 |
+
features1=features
|
45 |
+
features2=features*2
|
46 |
+
features3=features*4
|
47 |
+
features4=features*8
|
48 |
+
|
49 |
+
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
|
50 |
+
|
51 |
+
self.scratch.activation = nn.ReLU(False)
|
52 |
+
|
53 |
+
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
54 |
+
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
55 |
+
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
56 |
+
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
|
57 |
+
|
58 |
+
|
59 |
+
self.scratch.output_conv = nn.Sequential(
|
60 |
+
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
|
61 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
62 |
+
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
|
63 |
+
self.scratch.activation,
|
64 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
65 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
66 |
+
nn.Identity(),
|
67 |
+
)
|
68 |
+
|
69 |
+
if path:
|
70 |
+
self.load(path)
|
71 |
+
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
"""Forward pass.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
x (tensor): input data (image)
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
tensor: depth
|
81 |
+
"""
|
82 |
+
if self.channels_last==True:
|
83 |
+
print("self.channels_last = ", self.channels_last)
|
84 |
+
x.contiguous(memory_format=torch.channels_last)
|
85 |
+
|
86 |
+
|
87 |
+
layer_1 = self.pretrained.layer1(x)
|
88 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
89 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
90 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
91 |
+
|
92 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
93 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
94 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
95 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
96 |
+
|
97 |
+
|
98 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
99 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
100 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
101 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
102 |
+
|
103 |
+
out = self.scratch.output_conv(path_1)
|
104 |
+
|
105 |
+
return torch.squeeze(out, dim=1)
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
def fuse_model(m):
|
110 |
+
prev_previous_type = nn.Identity()
|
111 |
+
prev_previous_name = ''
|
112 |
+
previous_type = nn.Identity()
|
113 |
+
previous_name = ''
|
114 |
+
for name, module in m.named_modules():
|
115 |
+
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
|
116 |
+
# print("FUSED ", prev_previous_name, previous_name, name)
|
117 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
|
118 |
+
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
|
119 |
+
# print("FUSED ", prev_previous_name, previous_name)
|
120 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
|
121 |
+
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
|
122 |
+
# print("FUSED ", previous_name, name)
|
123 |
+
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
|
124 |
+
|
125 |
+
prev_previous_type = previous_type
|
126 |
+
prev_previous_name = previous_name
|
127 |
+
previous_type = type(module)
|
128 |
+
previous_name = name
|
annotator/midas/midas/transforms.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import math
|
4 |
+
|
5 |
+
|
6 |
+
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
7 |
+
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
sample (dict): sample
|
11 |
+
size (tuple): image size
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
tuple: new size
|
15 |
+
"""
|
16 |
+
shape = list(sample["disparity"].shape)
|
17 |
+
|
18 |
+
if shape[0] >= size[0] and shape[1] >= size[1]:
|
19 |
+
return sample
|
20 |
+
|
21 |
+
scale = [0, 0]
|
22 |
+
scale[0] = size[0] / shape[0]
|
23 |
+
scale[1] = size[1] / shape[1]
|
24 |
+
|
25 |
+
scale = max(scale)
|
26 |
+
|
27 |
+
shape[0] = math.ceil(scale * shape[0])
|
28 |
+
shape[1] = math.ceil(scale * shape[1])
|
29 |
+
|
30 |
+
# resize
|
31 |
+
sample["image"] = cv2.resize(
|
32 |
+
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
33 |
+
)
|
34 |
+
|
35 |
+
sample["disparity"] = cv2.resize(
|
36 |
+
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
37 |
+
)
|
38 |
+
sample["mask"] = cv2.resize(
|
39 |
+
sample["mask"].astype(np.float32),
|
40 |
+
tuple(shape[::-1]),
|
41 |
+
interpolation=cv2.INTER_NEAREST,
|
42 |
+
)
|
43 |
+
sample["mask"] = sample["mask"].astype(bool)
|
44 |
+
|
45 |
+
return tuple(shape)
|
46 |
+
|
47 |
+
|
48 |
+
class Resize(object):
|
49 |
+
"""Resize sample to given size (width, height).
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
width,
|
55 |
+
height,
|
56 |
+
resize_target=True,
|
57 |
+
keep_aspect_ratio=False,
|
58 |
+
ensure_multiple_of=1,
|
59 |
+
resize_method="lower_bound",
|
60 |
+
image_interpolation_method=cv2.INTER_AREA,
|
61 |
+
):
|
62 |
+
"""Init.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
width (int): desired output width
|
66 |
+
height (int): desired output height
|
67 |
+
resize_target (bool, optional):
|
68 |
+
True: Resize the full sample (image, mask, target).
|
69 |
+
False: Resize image only.
|
70 |
+
Defaults to True.
|
71 |
+
keep_aspect_ratio (bool, optional):
|
72 |
+
True: Keep the aspect ratio of the input sample.
|
73 |
+
Output sample might not have the given width and height, and
|
74 |
+
resize behaviour depends on the parameter 'resize_method'.
|
75 |
+
Defaults to False.
|
76 |
+
ensure_multiple_of (int, optional):
|
77 |
+
Output width and height is constrained to be multiple of this parameter.
|
78 |
+
Defaults to 1.
|
79 |
+
resize_method (str, optional):
|
80 |
+
"lower_bound": Output will be at least as large as the given size.
|
81 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
82 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
83 |
+
Defaults to "lower_bound".
|
84 |
+
"""
|
85 |
+
self.__width = width
|
86 |
+
self.__height = height
|
87 |
+
|
88 |
+
self.__resize_target = resize_target
|
89 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
90 |
+
self.__multiple_of = ensure_multiple_of
|
91 |
+
self.__resize_method = resize_method
|
92 |
+
self.__image_interpolation_method = image_interpolation_method
|
93 |
+
|
94 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
95 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
96 |
+
|
97 |
+
if max_val is not None and y > max_val:
|
98 |
+
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
99 |
+
|
100 |
+
if y < min_val:
|
101 |
+
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
102 |
+
|
103 |
+
return y
|
104 |
+
|
105 |
+
def get_size(self, width, height):
|
106 |
+
# determine new height and width
|
107 |
+
scale_height = self.__height / height
|
108 |
+
scale_width = self.__width / width
|
109 |
+
|
110 |
+
if self.__keep_aspect_ratio:
|
111 |
+
if self.__resize_method == "lower_bound":
|
112 |
+
# scale such that output size is lower bound
|
113 |
+
if scale_width > scale_height:
|
114 |
+
# fit width
|
115 |
+
scale_height = scale_width
|
116 |
+
else:
|
117 |
+
# fit height
|
118 |
+
scale_width = scale_height
|
119 |
+
elif self.__resize_method == "upper_bound":
|
120 |
+
# scale such that output size is upper bound
|
121 |
+
if scale_width < scale_height:
|
122 |
+
# fit width
|
123 |
+
scale_height = scale_width
|
124 |
+
else:
|
125 |
+
# fit height
|
126 |
+
scale_width = scale_height
|
127 |
+
elif self.__resize_method == "minimal":
|
128 |
+
# scale as least as possbile
|
129 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
130 |
+
# fit width
|
131 |
+
scale_height = scale_width
|
132 |
+
else:
|
133 |
+
# fit height
|
134 |
+
scale_width = scale_height
|
135 |
+
else:
|
136 |
+
raise ValueError(
|
137 |
+
f"resize_method {self.__resize_method} not implemented"
|
138 |
+
)
|
139 |
+
|
140 |
+
if self.__resize_method == "lower_bound":
|
141 |
+
new_height = self.constrain_to_multiple_of(
|
142 |
+
scale_height * height, min_val=self.__height
|
143 |
+
)
|
144 |
+
new_width = self.constrain_to_multiple_of(
|
145 |
+
scale_width * width, min_val=self.__width
|
146 |
+
)
|
147 |
+
elif self.__resize_method == "upper_bound":
|
148 |
+
new_height = self.constrain_to_multiple_of(
|
149 |
+
scale_height * height, max_val=self.__height
|
150 |
+
)
|
151 |
+
new_width = self.constrain_to_multiple_of(
|
152 |
+
scale_width * width, max_val=self.__width
|
153 |
+
)
|
154 |
+
elif self.__resize_method == "minimal":
|
155 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
156 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
157 |
+
else:
|
158 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
159 |
+
|
160 |
+
return (new_width, new_height)
|
161 |
+
|
162 |
+
def __call__(self, sample):
|
163 |
+
width, height = self.get_size(
|
164 |
+
sample["image"].shape[1], sample["image"].shape[0]
|
165 |
+
)
|
166 |
+
|
167 |
+
# resize sample
|
168 |
+
sample["image"] = cv2.resize(
|
169 |
+
sample["image"],
|
170 |
+
(width, height),
|
171 |
+
interpolation=self.__image_interpolation_method,
|
172 |
+
)
|
173 |
+
|
174 |
+
if self.__resize_target:
|
175 |
+
if "disparity" in sample:
|
176 |
+
sample["disparity"] = cv2.resize(
|
177 |
+
sample["disparity"],
|
178 |
+
(width, height),
|
179 |
+
interpolation=cv2.INTER_NEAREST,
|
180 |
+
)
|
181 |
+
|
182 |
+
if "depth" in sample:
|
183 |
+
sample["depth"] = cv2.resize(
|
184 |
+
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
185 |
+
)
|
186 |
+
|
187 |
+
sample["mask"] = cv2.resize(
|
188 |
+
sample["mask"].astype(np.float32),
|
189 |
+
(width, height),
|
190 |
+
interpolation=cv2.INTER_NEAREST,
|
191 |
+
)
|
192 |
+
sample["mask"] = sample["mask"].astype(bool)
|
193 |
+
|
194 |
+
return sample
|
195 |
+
|
196 |
+
|
197 |
+
class NormalizeImage(object):
|
198 |
+
"""Normlize image by given mean and std.
|
199 |
+
"""
|
200 |
+
|
201 |
+
def __init__(self, mean, std):
|
202 |
+
self.__mean = mean
|
203 |
+
self.__std = std
|
204 |
+
|
205 |
+
def __call__(self, sample):
|
206 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
207 |
+
|
208 |
+
return sample
|
209 |
+
|
210 |
+
|
211 |
+
class PrepareForNet(object):
|
212 |
+
"""Prepare sample for usage as network input.
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self):
|
216 |
+
pass
|
217 |
+
|
218 |
+
def __call__(self, sample):
|
219 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
220 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
221 |
+
|
222 |
+
if "mask" in sample:
|
223 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
224 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
225 |
+
|
226 |
+
if "disparity" in sample:
|
227 |
+
disparity = sample["disparity"].astype(np.float32)
|
228 |
+
sample["disparity"] = np.ascontiguousarray(disparity)
|
229 |
+
|
230 |
+
if "depth" in sample:
|
231 |
+
depth = sample["depth"].astype(np.float32)
|
232 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
233 |
+
|
234 |
+
return sample
|
annotator/midas/midas/vit.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import timm
|
4 |
+
import types
|
5 |
+
import math
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
class Slice(nn.Module):
|
10 |
+
def __init__(self, start_index=1):
|
11 |
+
super(Slice, self).__init__()
|
12 |
+
self.start_index = start_index
|
13 |
+
|
14 |
+
def forward(self, x):
|
15 |
+
return x[:, self.start_index :]
|
16 |
+
|
17 |
+
|
18 |
+
class AddReadout(nn.Module):
|
19 |
+
def __init__(self, start_index=1):
|
20 |
+
super(AddReadout, self).__init__()
|
21 |
+
self.start_index = start_index
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
if self.start_index == 2:
|
25 |
+
readout = (x[:, 0] + x[:, 1]) / 2
|
26 |
+
else:
|
27 |
+
readout = x[:, 0]
|
28 |
+
return x[:, self.start_index :] + readout.unsqueeze(1)
|
29 |
+
|
30 |
+
|
31 |
+
class ProjectReadout(nn.Module):
|
32 |
+
def __init__(self, in_features, start_index=1):
|
33 |
+
super(ProjectReadout, self).__init__()
|
34 |
+
self.start_index = start_index
|
35 |
+
|
36 |
+
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
40 |
+
features = torch.cat((x[:, self.start_index :], readout), -1)
|
41 |
+
|
42 |
+
return self.project(features)
|
43 |
+
|
44 |
+
|
45 |
+
class Transpose(nn.Module):
|
46 |
+
def __init__(self, dim0, dim1):
|
47 |
+
super(Transpose, self).__init__()
|
48 |
+
self.dim0 = dim0
|
49 |
+
self.dim1 = dim1
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
x = x.transpose(self.dim0, self.dim1)
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
def forward_vit(pretrained, x):
|
57 |
+
b, c, h, w = x.shape
|
58 |
+
|
59 |
+
glob = pretrained.model.forward_flex(x)
|
60 |
+
|
61 |
+
layer_1 = pretrained.activations["1"]
|
62 |
+
layer_2 = pretrained.activations["2"]
|
63 |
+
layer_3 = pretrained.activations["3"]
|
64 |
+
layer_4 = pretrained.activations["4"]
|
65 |
+
|
66 |
+
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
67 |
+
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
68 |
+
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
69 |
+
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
70 |
+
|
71 |
+
unflatten = nn.Sequential(
|
72 |
+
nn.Unflatten(
|
73 |
+
2,
|
74 |
+
torch.Size(
|
75 |
+
[
|
76 |
+
h // pretrained.model.patch_size[1],
|
77 |
+
w // pretrained.model.patch_size[0],
|
78 |
+
]
|
79 |
+
),
|
80 |
+
)
|
81 |
+
)
|
82 |
+
|
83 |
+
if layer_1.ndim == 3:
|
84 |
+
layer_1 = unflatten(layer_1)
|
85 |
+
if layer_2.ndim == 3:
|
86 |
+
layer_2 = unflatten(layer_2)
|
87 |
+
if layer_3.ndim == 3:
|
88 |
+
layer_3 = unflatten(layer_3)
|
89 |
+
if layer_4.ndim == 3:
|
90 |
+
layer_4 = unflatten(layer_4)
|
91 |
+
|
92 |
+
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
93 |
+
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
94 |
+
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
95 |
+
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
96 |
+
|
97 |
+
return layer_1, layer_2, layer_3, layer_4
|
98 |
+
|
99 |
+
|
100 |
+
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
101 |
+
posemb_tok, posemb_grid = (
|
102 |
+
posemb[:, : self.start_index],
|
103 |
+
posemb[0, self.start_index :],
|
104 |
+
)
|
105 |
+
|
106 |
+
gs_old = int(math.sqrt(len(posemb_grid)))
|
107 |
+
|
108 |
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
109 |
+
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
110 |
+
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
111 |
+
|
112 |
+
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
113 |
+
|
114 |
+
return posemb
|
115 |
+
|
116 |
+
|
117 |
+
def forward_flex(self, x):
|
118 |
+
b, c, h, w = x.shape
|
119 |
+
|
120 |
+
pos_embed = self._resize_pos_embed(
|
121 |
+
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
122 |
+
)
|
123 |
+
|
124 |
+
B = x.shape[0]
|
125 |
+
|
126 |
+
if hasattr(self.patch_embed, "backbone"):
|
127 |
+
x = self.patch_embed.backbone(x)
|
128 |
+
if isinstance(x, (list, tuple)):
|
129 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
130 |
+
|
131 |
+
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
132 |
+
|
133 |
+
if getattr(self, "dist_token", None) is not None:
|
134 |
+
cls_tokens = self.cls_token.expand(
|
135 |
+
B, -1, -1
|
136 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
137 |
+
dist_token = self.dist_token.expand(B, -1, -1)
|
138 |
+
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
139 |
+
else:
|
140 |
+
cls_tokens = self.cls_token.expand(
|
141 |
+
B, -1, -1
|
142 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
143 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
144 |
+
|
145 |
+
x = x + pos_embed
|
146 |
+
x = self.pos_drop(x)
|
147 |
+
|
148 |
+
for blk in self.blocks:
|
149 |
+
x = blk(x)
|
150 |
+
|
151 |
+
x = self.norm(x)
|
152 |
+
|
153 |
+
return x
|
154 |
+
|
155 |
+
|
156 |
+
activations = {}
|
157 |
+
|
158 |
+
|
159 |
+
def get_activation(name):
|
160 |
+
def hook(model, input, output):
|
161 |
+
activations[name] = output
|
162 |
+
|
163 |
+
return hook
|
164 |
+
|
165 |
+
|
166 |
+
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
167 |
+
if use_readout == "ignore":
|
168 |
+
readout_oper = [Slice(start_index)] * len(features)
|
169 |
+
elif use_readout == "add":
|
170 |
+
readout_oper = [AddReadout(start_index)] * len(features)
|
171 |
+
elif use_readout == "project":
|
172 |
+
readout_oper = [
|
173 |
+
ProjectReadout(vit_features, start_index) for out_feat in features
|
174 |
+
]
|
175 |
+
else:
|
176 |
+
assert (
|
177 |
+
False
|
178 |
+
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
179 |
+
|
180 |
+
return readout_oper
|
181 |
+
|
182 |
+
|
183 |
+
def _make_vit_b16_backbone(
|
184 |
+
model,
|
185 |
+
features=[96, 192, 384, 768],
|
186 |
+
size=[384, 384],
|
187 |
+
hooks=[2, 5, 8, 11],
|
188 |
+
vit_features=768,
|
189 |
+
use_readout="ignore",
|
190 |
+
start_index=1,
|
191 |
+
):
|
192 |
+
pretrained = nn.Module()
|
193 |
+
|
194 |
+
pretrained.model = model
|
195 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
196 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
197 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
198 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
199 |
+
|
200 |
+
pretrained.activations = activations
|
201 |
+
|
202 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
203 |
+
|
204 |
+
# 32, 48, 136, 384
|
205 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
206 |
+
readout_oper[0],
|
207 |
+
Transpose(1, 2),
|
208 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
209 |
+
nn.Conv2d(
|
210 |
+
in_channels=vit_features,
|
211 |
+
out_channels=features[0],
|
212 |
+
kernel_size=1,
|
213 |
+
stride=1,
|
214 |
+
padding=0,
|
215 |
+
),
|
216 |
+
nn.ConvTranspose2d(
|
217 |
+
in_channels=features[0],
|
218 |
+
out_channels=features[0],
|
219 |
+
kernel_size=4,
|
220 |
+
stride=4,
|
221 |
+
padding=0,
|
222 |
+
bias=True,
|
223 |
+
dilation=1,
|
224 |
+
groups=1,
|
225 |
+
),
|
226 |
+
)
|
227 |
+
|
228 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
229 |
+
readout_oper[1],
|
230 |
+
Transpose(1, 2),
|
231 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
232 |
+
nn.Conv2d(
|
233 |
+
in_channels=vit_features,
|
234 |
+
out_channels=features[1],
|
235 |
+
kernel_size=1,
|
236 |
+
stride=1,
|
237 |
+
padding=0,
|
238 |
+
),
|
239 |
+
nn.ConvTranspose2d(
|
240 |
+
in_channels=features[1],
|
241 |
+
out_channels=features[1],
|
242 |
+
kernel_size=2,
|
243 |
+
stride=2,
|
244 |
+
padding=0,
|
245 |
+
bias=True,
|
246 |
+
dilation=1,
|
247 |
+
groups=1,
|
248 |
+
),
|
249 |
+
)
|
250 |
+
|
251 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
252 |
+
readout_oper[2],
|
253 |
+
Transpose(1, 2),
|
254 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
255 |
+
nn.Conv2d(
|
256 |
+
in_channels=vit_features,
|
257 |
+
out_channels=features[2],
|
258 |
+
kernel_size=1,
|
259 |
+
stride=1,
|
260 |
+
padding=0,
|
261 |
+
),
|
262 |
+
)
|
263 |
+
|
264 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
265 |
+
readout_oper[3],
|
266 |
+
Transpose(1, 2),
|
267 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
268 |
+
nn.Conv2d(
|
269 |
+
in_channels=vit_features,
|
270 |
+
out_channels=features[3],
|
271 |
+
kernel_size=1,
|
272 |
+
stride=1,
|
273 |
+
padding=0,
|
274 |
+
),
|
275 |
+
nn.Conv2d(
|
276 |
+
in_channels=features[3],
|
277 |
+
out_channels=features[3],
|
278 |
+
kernel_size=3,
|
279 |
+
stride=2,
|
280 |
+
padding=1,
|
281 |
+
),
|
282 |
+
)
|
283 |
+
|
284 |
+
pretrained.model.start_index = start_index
|
285 |
+
pretrained.model.patch_size = [16, 16]
|
286 |
+
|
287 |
+
# We inject this function into the VisionTransformer instances so that
|
288 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
289 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
290 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
291 |
+
_resize_pos_embed, pretrained.model
|
292 |
+
)
|
293 |
+
|
294 |
+
return pretrained
|
295 |
+
|
296 |
+
|
297 |
+
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
|
298 |
+
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
299 |
+
|
300 |
+
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
301 |
+
return _make_vit_b16_backbone(
|
302 |
+
model,
|
303 |
+
features=[256, 512, 1024, 1024],
|
304 |
+
hooks=hooks,
|
305 |
+
vit_features=1024,
|
306 |
+
use_readout=use_readout,
|
307 |
+
)
|
308 |
+
|
309 |
+
|
310 |
+
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
|
311 |
+
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
312 |
+
|
313 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
314 |
+
return _make_vit_b16_backbone(
|
315 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
316 |
+
)
|
317 |
+
|
318 |
+
|
319 |
+
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
|
320 |
+
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
321 |
+
|
322 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
323 |
+
return _make_vit_b16_backbone(
|
324 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
325 |
+
)
|
326 |
+
|
327 |
+
|
328 |
+
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
|
329 |
+
model = timm.create_model(
|
330 |
+
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
331 |
+
)
|
332 |
+
|
333 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
334 |
+
return _make_vit_b16_backbone(
|
335 |
+
model,
|
336 |
+
features=[96, 192, 384, 768],
|
337 |
+
hooks=hooks,
|
338 |
+
use_readout=use_readout,
|
339 |
+
start_index=2,
|
340 |
+
)
|
341 |
+
|
342 |
+
|
343 |
+
def _make_vit_b_rn50_backbone(
|
344 |
+
model,
|
345 |
+
features=[256, 512, 768, 768],
|
346 |
+
size=[384, 384],
|
347 |
+
hooks=[0, 1, 8, 11],
|
348 |
+
vit_features=768,
|
349 |
+
use_vit_only=False,
|
350 |
+
use_readout="ignore",
|
351 |
+
start_index=1,
|
352 |
+
):
|
353 |
+
pretrained = nn.Module()
|
354 |
+
|
355 |
+
pretrained.model = model
|
356 |
+
|
357 |
+
if use_vit_only == True:
|
358 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
359 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
360 |
+
else:
|
361 |
+
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
362 |
+
get_activation("1")
|
363 |
+
)
|
364 |
+
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
365 |
+
get_activation("2")
|
366 |
+
)
|
367 |
+
|
368 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
369 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
370 |
+
|
371 |
+
pretrained.activations = activations
|
372 |
+
|
373 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
374 |
+
|
375 |
+
if use_vit_only == True:
|
376 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
377 |
+
readout_oper[0],
|
378 |
+
Transpose(1, 2),
|
379 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
380 |
+
nn.Conv2d(
|
381 |
+
in_channels=vit_features,
|
382 |
+
out_channels=features[0],
|
383 |
+
kernel_size=1,
|
384 |
+
stride=1,
|
385 |
+
padding=0,
|
386 |
+
),
|
387 |
+
nn.ConvTranspose2d(
|
388 |
+
in_channels=features[0],
|
389 |
+
out_channels=features[0],
|
390 |
+
kernel_size=4,
|
391 |
+
stride=4,
|
392 |
+
padding=0,
|
393 |
+
bias=True,
|
394 |
+
dilation=1,
|
395 |
+
groups=1,
|
396 |
+
),
|
397 |
+
)
|
398 |
+
|
399 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
400 |
+
readout_oper[1],
|
401 |
+
Transpose(1, 2),
|
402 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
403 |
+
nn.Conv2d(
|
404 |
+
in_channels=vit_features,
|
405 |
+
out_channels=features[1],
|
406 |
+
kernel_size=1,
|
407 |
+
stride=1,
|
408 |
+
padding=0,
|
409 |
+
),
|
410 |
+
nn.ConvTranspose2d(
|
411 |
+
in_channels=features[1],
|
412 |
+
out_channels=features[1],
|
413 |
+
kernel_size=2,
|
414 |
+
stride=2,
|
415 |
+
padding=0,
|
416 |
+
bias=True,
|
417 |
+
dilation=1,
|
418 |
+
groups=1,
|
419 |
+
),
|
420 |
+
)
|
421 |
+
else:
|
422 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
423 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
424 |
+
)
|
425 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
426 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
427 |
+
)
|
428 |
+
|
429 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
430 |
+
readout_oper[2],
|
431 |
+
Transpose(1, 2),
|
432 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
433 |
+
nn.Conv2d(
|
434 |
+
in_channels=vit_features,
|
435 |
+
out_channels=features[2],
|
436 |
+
kernel_size=1,
|
437 |
+
stride=1,
|
438 |
+
padding=0,
|
439 |
+
),
|
440 |
+
)
|
441 |
+
|
442 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
443 |
+
readout_oper[3],
|
444 |
+
Transpose(1, 2),
|
445 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
446 |
+
nn.Conv2d(
|
447 |
+
in_channels=vit_features,
|
448 |
+
out_channels=features[3],
|
449 |
+
kernel_size=1,
|
450 |
+
stride=1,
|
451 |
+
padding=0,
|
452 |
+
),
|
453 |
+
nn.Conv2d(
|
454 |
+
in_channels=features[3],
|
455 |
+
out_channels=features[3],
|
456 |
+
kernel_size=3,
|
457 |
+
stride=2,
|
458 |
+
padding=1,
|
459 |
+
),
|
460 |
+
)
|
461 |
+
|
462 |
+
pretrained.model.start_index = start_index
|
463 |
+
pretrained.model.patch_size = [16, 16]
|
464 |
+
|
465 |
+
# We inject this function into the VisionTransformer instances so that
|
466 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
467 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
468 |
+
|
469 |
+
# We inject this function into the VisionTransformer instances so that
|
470 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
471 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
472 |
+
_resize_pos_embed, pretrained.model
|
473 |
+
)
|
474 |
+
|
475 |
+
return pretrained
|
476 |
+
|
477 |
+
|
478 |
+
def _make_pretrained_vitb_rn50_384(
|
479 |
+
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
|
480 |
+
):
|
481 |
+
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
482 |
+
|
483 |
+
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
484 |
+
return _make_vit_b_rn50_backbone(
|
485 |
+
model,
|
486 |
+
features=[256, 512, 768, 768],
|
487 |
+
size=[384, 384],
|
488 |
+
hooks=hooks,
|
489 |
+
use_vit_only=use_vit_only,
|
490 |
+
use_readout=use_readout,
|
491 |
+
)
|
annotator/midas/utils.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utils for monoDepth."""
|
2 |
+
import sys
|
3 |
+
import re
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
def read_pfm(path):
|
10 |
+
"""Read pfm file.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
path (str): path to file
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
tuple: (data, scale)
|
17 |
+
"""
|
18 |
+
with open(path, "rb") as file:
|
19 |
+
|
20 |
+
color = None
|
21 |
+
width = None
|
22 |
+
height = None
|
23 |
+
scale = None
|
24 |
+
endian = None
|
25 |
+
|
26 |
+
header = file.readline().rstrip()
|
27 |
+
if header.decode("ascii") == "PF":
|
28 |
+
color = True
|
29 |
+
elif header.decode("ascii") == "Pf":
|
30 |
+
color = False
|
31 |
+
else:
|
32 |
+
raise Exception("Not a PFM file: " + path)
|
33 |
+
|
34 |
+
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
|
35 |
+
if dim_match:
|
36 |
+
width, height = list(map(int, dim_match.groups()))
|
37 |
+
else:
|
38 |
+
raise Exception("Malformed PFM header.")
|
39 |
+
|
40 |
+
scale = float(file.readline().decode("ascii").rstrip())
|
41 |
+
if scale < 0:
|
42 |
+
# little-endian
|
43 |
+
endian = "<"
|
44 |
+
scale = -scale
|
45 |
+
else:
|
46 |
+
# big-endian
|
47 |
+
endian = ">"
|
48 |
+
|
49 |
+
data = np.fromfile(file, endian + "f")
|
50 |
+
shape = (height, width, 3) if color else (height, width)
|
51 |
+
|
52 |
+
data = np.reshape(data, shape)
|
53 |
+
data = np.flipud(data)
|
54 |
+
|
55 |
+
return data, scale
|
56 |
+
|
57 |
+
|
58 |
+
def write_pfm(path, image, scale=1):
|
59 |
+
"""Write pfm file.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
path (str): pathto file
|
63 |
+
image (array): data
|
64 |
+
scale (int, optional): Scale. Defaults to 1.
|
65 |
+
"""
|
66 |
+
|
67 |
+
with open(path, "wb") as file:
|
68 |
+
color = None
|
69 |
+
|
70 |
+
if image.dtype.name != "float32":
|
71 |
+
raise Exception("Image dtype must be float32.")
|
72 |
+
|
73 |
+
image = np.flipud(image)
|
74 |
+
|
75 |
+
if len(image.shape) == 3 and image.shape[2] == 3: # color image
|
76 |
+
color = True
|
77 |
+
elif (
|
78 |
+
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
|
79 |
+
): # greyscale
|
80 |
+
color = False
|
81 |
+
else:
|
82 |
+
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
|
83 |
+
|
84 |
+
file.write("PF\n" if color else "Pf\n".encode())
|
85 |
+
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
|
86 |
+
|
87 |
+
endian = image.dtype.byteorder
|
88 |
+
|
89 |
+
if endian == "<" or endian == "=" and sys.byteorder == "little":
|
90 |
+
scale = -scale
|
91 |
+
|
92 |
+
file.write("%f\n".encode() % scale)
|
93 |
+
|
94 |
+
image.tofile(file)
|
95 |
+
|
96 |
+
|
97 |
+
def read_image(path):
|
98 |
+
"""Read image and output RGB image (0-1).
|
99 |
+
|
100 |
+
Args:
|
101 |
+
path (str): path to file
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
array: RGB image (0-1)
|
105 |
+
"""
|
106 |
+
img = cv2.imread(path)
|
107 |
+
|
108 |
+
if img.ndim == 2:
|
109 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
110 |
+
|
111 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
|
112 |
+
|
113 |
+
return img
|
114 |
+
|
115 |
+
|
116 |
+
def resize_image(img):
|
117 |
+
"""Resize image and make it fit for network.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
img (array): image
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
tensor: data ready for network
|
124 |
+
"""
|
125 |
+
height_orig = img.shape[0]
|
126 |
+
width_orig = img.shape[1]
|
127 |
+
|
128 |
+
if width_orig > height_orig:
|
129 |
+
scale = width_orig / 384
|
130 |
+
else:
|
131 |
+
scale = height_orig / 384
|
132 |
+
|
133 |
+
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
|
134 |
+
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
|
135 |
+
|
136 |
+
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
|
137 |
+
|
138 |
+
img_resized = (
|
139 |
+
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
|
140 |
+
)
|
141 |
+
img_resized = img_resized.unsqueeze(0)
|
142 |
+
|
143 |
+
return img_resized
|
144 |
+
|
145 |
+
|
146 |
+
def resize_depth(depth, width, height):
|
147 |
+
"""Resize depth map and bring to CPU (numpy).
|
148 |
+
|
149 |
+
Args:
|
150 |
+
depth (tensor): depth
|
151 |
+
width (int): image width
|
152 |
+
height (int): image height
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
array: processed depth
|
156 |
+
"""
|
157 |
+
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
|
158 |
+
|
159 |
+
depth_resized = cv2.resize(
|
160 |
+
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
|
161 |
+
)
|
162 |
+
|
163 |
+
return depth_resized
|
164 |
+
|
165 |
+
def write_depth(path, depth, bits=1):
|
166 |
+
"""Write depth map to pfm and png file.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
path (str): filepath without extension
|
170 |
+
depth (array): depth
|
171 |
+
"""
|
172 |
+
write_pfm(path + ".pfm", depth.astype(np.float32))
|
173 |
+
|
174 |
+
depth_min = depth.min()
|
175 |
+
depth_max = depth.max()
|
176 |
+
|
177 |
+
max_val = (2**(8*bits))-1
|
178 |
+
|
179 |
+
if depth_max - depth_min > np.finfo("float").eps:
|
180 |
+
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
181 |
+
else:
|
182 |
+
out = np.zeros(depth.shape, dtype=depth.type)
|
183 |
+
|
184 |
+
if bits == 1:
|
185 |
+
cv2.imwrite(path + ".png", out.astype("uint8"))
|
186 |
+
elif bits == 2:
|
187 |
+
cv2.imwrite(path + ".png", out.astype("uint16"))
|
188 |
+
|
189 |
+
return
|
annotator/mlsd/__init__.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
|
6 |
+
from einops import rearrange
|
7 |
+
from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny
|
8 |
+
from .models.mbv2_mlsd_large import MobileV2_MLSD_Large
|
9 |
+
from .utils import pred_lines
|
10 |
+
|
11 |
+
from annotator.util import annotator_ckpts_path
|
12 |
+
|
13 |
+
|
14 |
+
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/mlsd_large_512_fp32.pth"
|
15 |
+
|
16 |
+
|
17 |
+
class MLSDdetector:
|
18 |
+
def __init__(self):
|
19 |
+
model_path = os.path.join(annotator_ckpts_path, "mlsd_large_512_fp32.pth")
|
20 |
+
if not os.path.exists(model_path):
|
21 |
+
from basicsr.utils.download_util import load_file_from_url
|
22 |
+
load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
|
23 |
+
model = MobileV2_MLSD_Large()
|
24 |
+
model.load_state_dict(torch.load(model_path), strict=True)
|
25 |
+
self.model = model.cuda().eval()
|
26 |
+
|
27 |
+
def __call__(self, input_image, thr_v, thr_d):
|
28 |
+
assert input_image.ndim == 3
|
29 |
+
img = input_image
|
30 |
+
img_output = np.zeros_like(img)
|
31 |
+
try:
|
32 |
+
with torch.no_grad():
|
33 |
+
lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d)
|
34 |
+
for line in lines:
|
35 |
+
x_start, y_start, x_end, y_end = [int(val) for val in line]
|
36 |
+
cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1)
|
37 |
+
except Exception as e:
|
38 |
+
pass
|
39 |
+
return img_output[:, :, 0]
|
annotator/mlsd/models/mbv2_mlsd_large.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.utils.model_zoo as model_zoo
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
|
9 |
+
class BlockTypeA(nn.Module):
|
10 |
+
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
|
11 |
+
super(BlockTypeA, self).__init__()
|
12 |
+
self.conv1 = nn.Sequential(
|
13 |
+
nn.Conv2d(in_c2, out_c2, kernel_size=1),
|
14 |
+
nn.BatchNorm2d(out_c2),
|
15 |
+
nn.ReLU(inplace=True)
|
16 |
+
)
|
17 |
+
self.conv2 = nn.Sequential(
|
18 |
+
nn.Conv2d(in_c1, out_c1, kernel_size=1),
|
19 |
+
nn.BatchNorm2d(out_c1),
|
20 |
+
nn.ReLU(inplace=True)
|
21 |
+
)
|
22 |
+
self.upscale = upscale
|
23 |
+
|
24 |
+
def forward(self, a, b):
|
25 |
+
b = self.conv1(b)
|
26 |
+
a = self.conv2(a)
|
27 |
+
if self.upscale:
|
28 |
+
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
|
29 |
+
return torch.cat((a, b), dim=1)
|
30 |
+
|
31 |
+
|
32 |
+
class BlockTypeB(nn.Module):
|
33 |
+
def __init__(self, in_c, out_c):
|
34 |
+
super(BlockTypeB, self).__init__()
|
35 |
+
self.conv1 = nn.Sequential(
|
36 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
37 |
+
nn.BatchNorm2d(in_c),
|
38 |
+
nn.ReLU()
|
39 |
+
)
|
40 |
+
self.conv2 = nn.Sequential(
|
41 |
+
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
|
42 |
+
nn.BatchNorm2d(out_c),
|
43 |
+
nn.ReLU()
|
44 |
+
)
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
x = self.conv1(x) + x
|
48 |
+
x = self.conv2(x)
|
49 |
+
return x
|
50 |
+
|
51 |
+
class BlockTypeC(nn.Module):
|
52 |
+
def __init__(self, in_c, out_c):
|
53 |
+
super(BlockTypeC, self).__init__()
|
54 |
+
self.conv1 = nn.Sequential(
|
55 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
|
56 |
+
nn.BatchNorm2d(in_c),
|
57 |
+
nn.ReLU()
|
58 |
+
)
|
59 |
+
self.conv2 = nn.Sequential(
|
60 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
61 |
+
nn.BatchNorm2d(in_c),
|
62 |
+
nn.ReLU()
|
63 |
+
)
|
64 |
+
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
x = self.conv1(x)
|
68 |
+
x = self.conv2(x)
|
69 |
+
x = self.conv3(x)
|
70 |
+
return x
|
71 |
+
|
72 |
+
def _make_divisible(v, divisor, min_value=None):
|
73 |
+
"""
|
74 |
+
This function is taken from the original tf repo.
|
75 |
+
It ensures that all layers have a channel number that is divisible by 8
|
76 |
+
It can be seen here:
|
77 |
+
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
78 |
+
:param v:
|
79 |
+
:param divisor:
|
80 |
+
:param min_value:
|
81 |
+
:return:
|
82 |
+
"""
|
83 |
+
if min_value is None:
|
84 |
+
min_value = divisor
|
85 |
+
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
86 |
+
# Make sure that round down does not go down by more than 10%.
|
87 |
+
if new_v < 0.9 * v:
|
88 |
+
new_v += divisor
|
89 |
+
return new_v
|
90 |
+
|
91 |
+
|
92 |
+
class ConvBNReLU(nn.Sequential):
|
93 |
+
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
94 |
+
self.channel_pad = out_planes - in_planes
|
95 |
+
self.stride = stride
|
96 |
+
#padding = (kernel_size - 1) // 2
|
97 |
+
|
98 |
+
# TFLite uses slightly different padding than PyTorch
|
99 |
+
if stride == 2:
|
100 |
+
padding = 0
|
101 |
+
else:
|
102 |
+
padding = (kernel_size - 1) // 2
|
103 |
+
|
104 |
+
super(ConvBNReLU, self).__init__(
|
105 |
+
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
|
106 |
+
nn.BatchNorm2d(out_planes),
|
107 |
+
nn.ReLU6(inplace=True)
|
108 |
+
)
|
109 |
+
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
|
110 |
+
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
# TFLite uses different padding
|
114 |
+
if self.stride == 2:
|
115 |
+
x = F.pad(x, (0, 1, 0, 1), "constant", 0)
|
116 |
+
#print(x.shape)
|
117 |
+
|
118 |
+
for module in self:
|
119 |
+
if not isinstance(module, nn.MaxPool2d):
|
120 |
+
x = module(x)
|
121 |
+
return x
|
122 |
+
|
123 |
+
|
124 |
+
class InvertedResidual(nn.Module):
|
125 |
+
def __init__(self, inp, oup, stride, expand_ratio):
|
126 |
+
super(InvertedResidual, self).__init__()
|
127 |
+
self.stride = stride
|
128 |
+
assert stride in [1, 2]
|
129 |
+
|
130 |
+
hidden_dim = int(round(inp * expand_ratio))
|
131 |
+
self.use_res_connect = self.stride == 1 and inp == oup
|
132 |
+
|
133 |
+
layers = []
|
134 |
+
if expand_ratio != 1:
|
135 |
+
# pw
|
136 |
+
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
137 |
+
layers.extend([
|
138 |
+
# dw
|
139 |
+
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
140 |
+
# pw-linear
|
141 |
+
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
142 |
+
nn.BatchNorm2d(oup),
|
143 |
+
])
|
144 |
+
self.conv = nn.Sequential(*layers)
|
145 |
+
|
146 |
+
def forward(self, x):
|
147 |
+
if self.use_res_connect:
|
148 |
+
return x + self.conv(x)
|
149 |
+
else:
|
150 |
+
return self.conv(x)
|
151 |
+
|
152 |
+
|
153 |
+
class MobileNetV2(nn.Module):
|
154 |
+
def __init__(self, pretrained=True):
|
155 |
+
"""
|
156 |
+
MobileNet V2 main class
|
157 |
+
Args:
|
158 |
+
num_classes (int): Number of classes
|
159 |
+
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
|
160 |
+
inverted_residual_setting: Network structure
|
161 |
+
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
|
162 |
+
Set to 1 to turn off rounding
|
163 |
+
block: Module specifying inverted residual building block for mobilenet
|
164 |
+
"""
|
165 |
+
super(MobileNetV2, self).__init__()
|
166 |
+
|
167 |
+
block = InvertedResidual
|
168 |
+
input_channel = 32
|
169 |
+
last_channel = 1280
|
170 |
+
width_mult = 1.0
|
171 |
+
round_nearest = 8
|
172 |
+
|
173 |
+
inverted_residual_setting = [
|
174 |
+
# t, c, n, s
|
175 |
+
[1, 16, 1, 1],
|
176 |
+
[6, 24, 2, 2],
|
177 |
+
[6, 32, 3, 2],
|
178 |
+
[6, 64, 4, 2],
|
179 |
+
[6, 96, 3, 1],
|
180 |
+
#[6, 160, 3, 2],
|
181 |
+
#[6, 320, 1, 1],
|
182 |
+
]
|
183 |
+
|
184 |
+
# only check the first element, assuming user knows t,c,n,s are required
|
185 |
+
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
|
186 |
+
raise ValueError("inverted_residual_setting should be non-empty "
|
187 |
+
"or a 4-element list, got {}".format(inverted_residual_setting))
|
188 |
+
|
189 |
+
# building first layer
|
190 |
+
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
191 |
+
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
192 |
+
features = [ConvBNReLU(4, input_channel, stride=2)]
|
193 |
+
# building inverted residual blocks
|
194 |
+
for t, c, n, s in inverted_residual_setting:
|
195 |
+
output_channel = _make_divisible(c * width_mult, round_nearest)
|
196 |
+
for i in range(n):
|
197 |
+
stride = s if i == 0 else 1
|
198 |
+
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
199 |
+
input_channel = output_channel
|
200 |
+
|
201 |
+
self.features = nn.Sequential(*features)
|
202 |
+
self.fpn_selected = [1, 3, 6, 10, 13]
|
203 |
+
# weight initialization
|
204 |
+
for m in self.modules():
|
205 |
+
if isinstance(m, nn.Conv2d):
|
206 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
207 |
+
if m.bias is not None:
|
208 |
+
nn.init.zeros_(m.bias)
|
209 |
+
elif isinstance(m, nn.BatchNorm2d):
|
210 |
+
nn.init.ones_(m.weight)
|
211 |
+
nn.init.zeros_(m.bias)
|
212 |
+
elif isinstance(m, nn.Linear):
|
213 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
214 |
+
nn.init.zeros_(m.bias)
|
215 |
+
if pretrained:
|
216 |
+
self._load_pretrained_model()
|
217 |
+
|
218 |
+
def _forward_impl(self, x):
|
219 |
+
# This exists since TorchScript doesn't support inheritance, so the superclass method
|
220 |
+
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
|
221 |
+
fpn_features = []
|
222 |
+
for i, f in enumerate(self.features):
|
223 |
+
if i > self.fpn_selected[-1]:
|
224 |
+
break
|
225 |
+
x = f(x)
|
226 |
+
if i in self.fpn_selected:
|
227 |
+
fpn_features.append(x)
|
228 |
+
|
229 |
+
c1, c2, c3, c4, c5 = fpn_features
|
230 |
+
return c1, c2, c3, c4, c5
|
231 |
+
|
232 |
+
|
233 |
+
def forward(self, x):
|
234 |
+
return self._forward_impl(x)
|
235 |
+
|
236 |
+
def _load_pretrained_model(self):
|
237 |
+
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
|
238 |
+
model_dict = {}
|
239 |
+
state_dict = self.state_dict()
|
240 |
+
for k, v in pretrain_dict.items():
|
241 |
+
if k in state_dict:
|
242 |
+
model_dict[k] = v
|
243 |
+
state_dict.update(model_dict)
|
244 |
+
self.load_state_dict(state_dict)
|
245 |
+
|
246 |
+
|
247 |
+
class MobileV2_MLSD_Large(nn.Module):
|
248 |
+
def __init__(self):
|
249 |
+
super(MobileV2_MLSD_Large, self).__init__()
|
250 |
+
|
251 |
+
self.backbone = MobileNetV2(pretrained=False)
|
252 |
+
## A, B
|
253 |
+
self.block15 = BlockTypeA(in_c1= 64, in_c2= 96,
|
254 |
+
out_c1= 64, out_c2=64,
|
255 |
+
upscale=False)
|
256 |
+
self.block16 = BlockTypeB(128, 64)
|
257 |
+
|
258 |
+
## A, B
|
259 |
+
self.block17 = BlockTypeA(in_c1 = 32, in_c2 = 64,
|
260 |
+
out_c1= 64, out_c2= 64)
|
261 |
+
self.block18 = BlockTypeB(128, 64)
|
262 |
+
|
263 |
+
## A, B
|
264 |
+
self.block19 = BlockTypeA(in_c1=24, in_c2=64,
|
265 |
+
out_c1=64, out_c2=64)
|
266 |
+
self.block20 = BlockTypeB(128, 64)
|
267 |
+
|
268 |
+
## A, B, C
|
269 |
+
self.block21 = BlockTypeA(in_c1=16, in_c2=64,
|
270 |
+
out_c1=64, out_c2=64)
|
271 |
+
self.block22 = BlockTypeB(128, 64)
|
272 |
+
|
273 |
+
self.block23 = BlockTypeC(64, 16)
|
274 |
+
|
275 |
+
def forward(self, x):
|
276 |
+
c1, c2, c3, c4, c5 = self.backbone(x)
|
277 |
+
|
278 |
+
x = self.block15(c4, c5)
|
279 |
+
x = self.block16(x)
|
280 |
+
|
281 |
+
x = self.block17(c3, x)
|
282 |
+
x = self.block18(x)
|
283 |
+
|
284 |
+
x = self.block19(c2, x)
|
285 |
+
x = self.block20(x)
|
286 |
+
|
287 |
+
x = self.block21(c1, x)
|
288 |
+
x = self.block22(x)
|
289 |
+
x = self.block23(x)
|
290 |
+
x = x[:, 7:, :, :]
|
291 |
+
|
292 |
+
return x
|
annotator/mlsd/models/mbv2_mlsd_tiny.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.utils.model_zoo as model_zoo
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
|
9 |
+
class BlockTypeA(nn.Module):
|
10 |
+
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
|
11 |
+
super(BlockTypeA, self).__init__()
|
12 |
+
self.conv1 = nn.Sequential(
|
13 |
+
nn.Conv2d(in_c2, out_c2, kernel_size=1),
|
14 |
+
nn.BatchNorm2d(out_c2),
|
15 |
+
nn.ReLU(inplace=True)
|
16 |
+
)
|
17 |
+
self.conv2 = nn.Sequential(
|
18 |
+
nn.Conv2d(in_c1, out_c1, kernel_size=1),
|
19 |
+
nn.BatchNorm2d(out_c1),
|
20 |
+
nn.ReLU(inplace=True)
|
21 |
+
)
|
22 |
+
self.upscale = upscale
|
23 |
+
|
24 |
+
def forward(self, a, b):
|
25 |
+
b = self.conv1(b)
|
26 |
+
a = self.conv2(a)
|
27 |
+
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
|
28 |
+
return torch.cat((a, b), dim=1)
|
29 |
+
|
30 |
+
|
31 |
+
class BlockTypeB(nn.Module):
|
32 |
+
def __init__(self, in_c, out_c):
|
33 |
+
super(BlockTypeB, self).__init__()
|
34 |
+
self.conv1 = nn.Sequential(
|
35 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
36 |
+
nn.BatchNorm2d(in_c),
|
37 |
+
nn.ReLU()
|
38 |
+
)
|
39 |
+
self.conv2 = nn.Sequential(
|
40 |
+
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
|
41 |
+
nn.BatchNorm2d(out_c),
|
42 |
+
nn.ReLU()
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
x = self.conv1(x) + x
|
47 |
+
x = self.conv2(x)
|
48 |
+
return x
|
49 |
+
|
50 |
+
class BlockTypeC(nn.Module):
|
51 |
+
def __init__(self, in_c, out_c):
|
52 |
+
super(BlockTypeC, self).__init__()
|
53 |
+
self.conv1 = nn.Sequential(
|
54 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
|
55 |
+
nn.BatchNorm2d(in_c),
|
56 |
+
nn.ReLU()
|
57 |
+
)
|
58 |
+
self.conv2 = nn.Sequential(
|
59 |
+
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
|
60 |
+
nn.BatchNorm2d(in_c),
|
61 |
+
nn.ReLU()
|
62 |
+
)
|
63 |
+
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.conv1(x)
|
67 |
+
x = self.conv2(x)
|
68 |
+
x = self.conv3(x)
|
69 |
+
return x
|
70 |
+
|
71 |
+
def _make_divisible(v, divisor, min_value=None):
|
72 |
+
"""
|
73 |
+
This function is taken from the original tf repo.
|
74 |
+
It ensures that all layers have a channel number that is divisible by 8
|
75 |
+
It can be seen here:
|
76 |
+
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
|
77 |
+
:param v:
|
78 |
+
:param divisor:
|
79 |
+
:param min_value:
|
80 |
+
:return:
|
81 |
+
"""
|
82 |
+
if min_value is None:
|
83 |
+
min_value = divisor
|
84 |
+
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
85 |
+
# Make sure that round down does not go down by more than 10%.
|
86 |
+
if new_v < 0.9 * v:
|
87 |
+
new_v += divisor
|
88 |
+
return new_v
|
89 |
+
|
90 |
+
|
91 |
+
class ConvBNReLU(nn.Sequential):
|
92 |
+
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
93 |
+
self.channel_pad = out_planes - in_planes
|
94 |
+
self.stride = stride
|
95 |
+
#padding = (kernel_size - 1) // 2
|
96 |
+
|
97 |
+
# TFLite uses slightly different padding than PyTorch
|
98 |
+
if stride == 2:
|
99 |
+
padding = 0
|
100 |
+
else:
|
101 |
+
padding = (kernel_size - 1) // 2
|
102 |
+
|
103 |
+
super(ConvBNReLU, self).__init__(
|
104 |
+
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
|
105 |
+
nn.BatchNorm2d(out_planes),
|
106 |
+
nn.ReLU6(inplace=True)
|
107 |
+
)
|
108 |
+
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
|
109 |
+
|
110 |
+
|
111 |
+
def forward(self, x):
|
112 |
+
# TFLite uses different padding
|
113 |
+
if self.stride == 2:
|
114 |
+
x = F.pad(x, (0, 1, 0, 1), "constant", 0)
|
115 |
+
#print(x.shape)
|
116 |
+
|
117 |
+
for module in self:
|
118 |
+
if not isinstance(module, nn.MaxPool2d):
|
119 |
+
x = module(x)
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
class InvertedResidual(nn.Module):
|
124 |
+
def __init__(self, inp, oup, stride, expand_ratio):
|
125 |
+
super(InvertedResidual, self).__init__()
|
126 |
+
self.stride = stride
|
127 |
+
assert stride in [1, 2]
|
128 |
+
|
129 |
+
hidden_dim = int(round(inp * expand_ratio))
|
130 |
+
self.use_res_connect = self.stride == 1 and inp == oup
|
131 |
+
|
132 |
+
layers = []
|
133 |
+
if expand_ratio != 1:
|
134 |
+
# pw
|
135 |
+
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
136 |
+
layers.extend([
|
137 |
+
# dw
|
138 |
+
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
139 |
+
# pw-linear
|
140 |
+
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
141 |
+
nn.BatchNorm2d(oup),
|
142 |
+
])
|
143 |
+
self.conv = nn.Sequential(*layers)
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
if self.use_res_connect:
|
147 |
+
return x + self.conv(x)
|
148 |
+
else:
|
149 |
+
return self.conv(x)
|
150 |
+
|
151 |
+
|
152 |
+
class MobileNetV2(nn.Module):
|
153 |
+
def __init__(self, pretrained=True):
|
154 |
+
"""
|
155 |
+
MobileNet V2 main class
|
156 |
+
Args:
|
157 |
+
num_classes (int): Number of classes
|
158 |
+
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
|
159 |
+
inverted_residual_setting: Network structure
|
160 |
+
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
|
161 |
+
Set to 1 to turn off rounding
|
162 |
+
block: Module specifying inverted residual building block for mobilenet
|
163 |
+
"""
|
164 |
+
super(MobileNetV2, self).__init__()
|
165 |
+
|
166 |
+
block = InvertedResidual
|
167 |
+
input_channel = 32
|
168 |
+
last_channel = 1280
|
169 |
+
width_mult = 1.0
|
170 |
+
round_nearest = 8
|
171 |
+
|
172 |
+
inverted_residual_setting = [
|
173 |
+
# t, c, n, s
|
174 |
+
[1, 16, 1, 1],
|
175 |
+
[6, 24, 2, 2],
|
176 |
+
[6, 32, 3, 2],
|
177 |
+
[6, 64, 4, 2],
|
178 |
+
#[6, 96, 3, 1],
|
179 |
+
#[6, 160, 3, 2],
|
180 |
+
#[6, 320, 1, 1],
|
181 |
+
]
|
182 |
+
|
183 |
+
# only check the first element, assuming user knows t,c,n,s are required
|
184 |
+
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
|
185 |
+
raise ValueError("inverted_residual_setting should be non-empty "
|
186 |
+
"or a 4-element list, got {}".format(inverted_residual_setting))
|
187 |
+
|
188 |
+
# building first layer
|
189 |
+
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
190 |
+
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
191 |
+
features = [ConvBNReLU(4, input_channel, stride=2)]
|
192 |
+
# building inverted residual blocks
|
193 |
+
for t, c, n, s in inverted_residual_setting:
|
194 |
+
output_channel = _make_divisible(c * width_mult, round_nearest)
|
195 |
+
for i in range(n):
|
196 |
+
stride = s if i == 0 else 1
|
197 |
+
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
|
198 |
+
input_channel = output_channel
|
199 |
+
self.features = nn.Sequential(*features)
|
200 |
+
|
201 |
+
self.fpn_selected = [3, 6, 10]
|
202 |
+
# weight initialization
|
203 |
+
for m in self.modules():
|
204 |
+
if isinstance(m, nn.Conv2d):
|
205 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out')
|
206 |
+
if m.bias is not None:
|
207 |
+
nn.init.zeros_(m.bias)
|
208 |
+
elif isinstance(m, nn.BatchNorm2d):
|
209 |
+
nn.init.ones_(m.weight)
|
210 |
+
nn.init.zeros_(m.bias)
|
211 |
+
elif isinstance(m, nn.Linear):
|
212 |
+
nn.init.normal_(m.weight, 0, 0.01)
|
213 |
+
nn.init.zeros_(m.bias)
|
214 |
+
|
215 |
+
#if pretrained:
|
216 |
+
# self._load_pretrained_model()
|
217 |
+
|
218 |
+
def _forward_impl(self, x):
|
219 |
+
# This exists since TorchScript doesn't support inheritance, so the superclass method
|
220 |
+
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
|
221 |
+
fpn_features = []
|
222 |
+
for i, f in enumerate(self.features):
|
223 |
+
if i > self.fpn_selected[-1]:
|
224 |
+
break
|
225 |
+
x = f(x)
|
226 |
+
if i in self.fpn_selected:
|
227 |
+
fpn_features.append(x)
|
228 |
+
|
229 |
+
c2, c3, c4 = fpn_features
|
230 |
+
return c2, c3, c4
|
231 |
+
|
232 |
+
|
233 |
+
def forward(self, x):
|
234 |
+
return self._forward_impl(x)
|
235 |
+
|
236 |
+
def _load_pretrained_model(self):
|
237 |
+
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
|
238 |
+
model_dict = {}
|
239 |
+
state_dict = self.state_dict()
|
240 |
+
for k, v in pretrain_dict.items():
|
241 |
+
if k in state_dict:
|
242 |
+
model_dict[k] = v
|
243 |
+
state_dict.update(model_dict)
|
244 |
+
self.load_state_dict(state_dict)
|
245 |
+
|
246 |
+
|
247 |
+
class MobileV2_MLSD_Tiny(nn.Module):
|
248 |
+
def __init__(self):
|
249 |
+
super(MobileV2_MLSD_Tiny, self).__init__()
|
250 |
+
|
251 |
+
self.backbone = MobileNetV2(pretrained=True)
|
252 |
+
|
253 |
+
self.block12 = BlockTypeA(in_c1= 32, in_c2= 64,
|
254 |
+
out_c1= 64, out_c2=64)
|
255 |
+
self.block13 = BlockTypeB(128, 64)
|
256 |
+
|
257 |
+
self.block14 = BlockTypeA(in_c1 = 24, in_c2 = 64,
|
258 |
+
out_c1= 32, out_c2= 32)
|
259 |
+
self.block15 = BlockTypeB(64, 64)
|
260 |
+
|
261 |
+
self.block16 = BlockTypeC(64, 16)
|
262 |
+
|
263 |
+
def forward(self, x):
|
264 |
+
c2, c3, c4 = self.backbone(x)
|
265 |
+
|
266 |
+
x = self.block12(c3, c4)
|
267 |
+
x = self.block13(x)
|
268 |
+
x = self.block14(c2, x)
|
269 |
+
x = self.block15(x)
|
270 |
+
x = self.block16(x)
|
271 |
+
x = x[:, 7:, :, :]
|
272 |
+
#print(x.shape)
|
273 |
+
x = F.interpolate(x, scale_factor=2.0, mode='bilinear', align_corners=True)
|
274 |
+
|
275 |
+
return x
|
annotator/mlsd/utils.py
ADDED
@@ -0,0 +1,580 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
modified by lihaoweicv
|
3 |
+
pytorch version
|
4 |
+
'''
|
5 |
+
|
6 |
+
'''
|
7 |
+
M-LSD
|
8 |
+
Copyright 2021-present NAVER Corp.
|
9 |
+
Apache License v2.0
|
10 |
+
'''
|
11 |
+
|
12 |
+
import os
|
13 |
+
import numpy as np
|
14 |
+
import cv2
|
15 |
+
import torch
|
16 |
+
from torch.nn import functional as F
|
17 |
+
|
18 |
+
|
19 |
+
def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5):
|
20 |
+
'''
|
21 |
+
tpMap:
|
22 |
+
center: tpMap[1, 0, :, :]
|
23 |
+
displacement: tpMap[1, 1:5, :, :]
|
24 |
+
'''
|
25 |
+
b, c, h, w = tpMap.shape
|
26 |
+
assert b==1, 'only support bsize==1'
|
27 |
+
displacement = tpMap[:, 1:5, :, :][0]
|
28 |
+
center = tpMap[:, 0, :, :]
|
29 |
+
heat = torch.sigmoid(center)
|
30 |
+
hmax = F.max_pool2d( heat, (ksize, ksize), stride=1, padding=(ksize-1)//2)
|
31 |
+
keep = (hmax == heat).float()
|
32 |
+
heat = heat * keep
|
33 |
+
heat = heat.reshape(-1, )
|
34 |
+
|
35 |
+
scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True)
|
36 |
+
yy = torch.floor_divide(indices, w).unsqueeze(-1)
|
37 |
+
xx = torch.fmod(indices, w).unsqueeze(-1)
|
38 |
+
ptss = torch.cat((yy, xx),dim=-1)
|
39 |
+
|
40 |
+
ptss = ptss.detach().cpu().numpy()
|
41 |
+
scores = scores.detach().cpu().numpy()
|
42 |
+
displacement = displacement.detach().cpu().numpy()
|
43 |
+
displacement = displacement.transpose((1,2,0))
|
44 |
+
return ptss, scores, displacement
|
45 |
+
|
46 |
+
|
47 |
+
def pred_lines(image, model,
|
48 |
+
input_shape=[512, 512],
|
49 |
+
score_thr=0.10,
|
50 |
+
dist_thr=20.0):
|
51 |
+
h, w, _ = image.shape
|
52 |
+
h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
|
53 |
+
|
54 |
+
resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA),
|
55 |
+
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
|
56 |
+
|
57 |
+
resized_image = resized_image.transpose((2,0,1))
|
58 |
+
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
|
59 |
+
batch_image = (batch_image / 127.5) - 1.0
|
60 |
+
|
61 |
+
batch_image = torch.from_numpy(batch_image).float().cuda()
|
62 |
+
outputs = model(batch_image)
|
63 |
+
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
|
64 |
+
start = vmap[:, :, :2]
|
65 |
+
end = vmap[:, :, 2:]
|
66 |
+
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
|
67 |
+
|
68 |
+
segments_list = []
|
69 |
+
for center, score in zip(pts, pts_score):
|
70 |
+
y, x = center
|
71 |
+
distance = dist_map[y, x]
|
72 |
+
if score > score_thr and distance > dist_thr:
|
73 |
+
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
|
74 |
+
x_start = x + disp_x_start
|
75 |
+
y_start = y + disp_y_start
|
76 |
+
x_end = x + disp_x_end
|
77 |
+
y_end = y + disp_y_end
|
78 |
+
segments_list.append([x_start, y_start, x_end, y_end])
|
79 |
+
|
80 |
+
lines = 2 * np.array(segments_list) # 256 > 512
|
81 |
+
lines[:, 0] = lines[:, 0] * w_ratio
|
82 |
+
lines[:, 1] = lines[:, 1] * h_ratio
|
83 |
+
lines[:, 2] = lines[:, 2] * w_ratio
|
84 |
+
lines[:, 3] = lines[:, 3] * h_ratio
|
85 |
+
|
86 |
+
return lines
|
87 |
+
|
88 |
+
|
89 |
+
def pred_squares(image,
|
90 |
+
model,
|
91 |
+
input_shape=[512, 512],
|
92 |
+
params={'score': 0.06,
|
93 |
+
'outside_ratio': 0.28,
|
94 |
+
'inside_ratio': 0.45,
|
95 |
+
'w_overlap': 0.0,
|
96 |
+
'w_degree': 1.95,
|
97 |
+
'w_length': 0.0,
|
98 |
+
'w_area': 1.86,
|
99 |
+
'w_center': 0.14}):
|
100 |
+
'''
|
101 |
+
shape = [height, width]
|
102 |
+
'''
|
103 |
+
h, w, _ = image.shape
|
104 |
+
original_shape = [h, w]
|
105 |
+
|
106 |
+
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA),
|
107 |
+
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
|
108 |
+
resized_image = resized_image.transpose((2, 0, 1))
|
109 |
+
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
|
110 |
+
batch_image = (batch_image / 127.5) - 1.0
|
111 |
+
|
112 |
+
batch_image = torch.from_numpy(batch_image).float().cuda()
|
113 |
+
outputs = model(batch_image)
|
114 |
+
|
115 |
+
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
|
116 |
+
start = vmap[:, :, :2] # (x, y)
|
117 |
+
end = vmap[:, :, 2:] # (x, y)
|
118 |
+
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
|
119 |
+
|
120 |
+
junc_list = []
|
121 |
+
segments_list = []
|
122 |
+
for junc, score in zip(pts, pts_score):
|
123 |
+
y, x = junc
|
124 |
+
distance = dist_map[y, x]
|
125 |
+
if score > params['score'] and distance > 20.0:
|
126 |
+
junc_list.append([x, y])
|
127 |
+
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
|
128 |
+
d_arrow = 1.0
|
129 |
+
x_start = x + d_arrow * disp_x_start
|
130 |
+
y_start = y + d_arrow * disp_y_start
|
131 |
+
x_end = x + d_arrow * disp_x_end
|
132 |
+
y_end = y + d_arrow * disp_y_end
|
133 |
+
segments_list.append([x_start, y_start, x_end, y_end])
|
134 |
+
|
135 |
+
segments = np.array(segments_list)
|
136 |
+
|
137 |
+
####### post processing for squares
|
138 |
+
# 1. get unique lines
|
139 |
+
point = np.array([[0, 0]])
|
140 |
+
point = point[0]
|
141 |
+
start = segments[:, :2]
|
142 |
+
end = segments[:, 2:]
|
143 |
+
diff = start - end
|
144 |
+
a = diff[:, 1]
|
145 |
+
b = -diff[:, 0]
|
146 |
+
c = a * start[:, 0] + b * start[:, 1]
|
147 |
+
|
148 |
+
d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10)
|
149 |
+
theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi
|
150 |
+
theta[theta < 0.0] += 180
|
151 |
+
hough = np.concatenate([d[:, None], theta[:, None]], axis=-1)
|
152 |
+
|
153 |
+
d_quant = 1
|
154 |
+
theta_quant = 2
|
155 |
+
hough[:, 0] //= d_quant
|
156 |
+
hough[:, 1] //= theta_quant
|
157 |
+
_, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True)
|
158 |
+
|
159 |
+
acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32')
|
160 |
+
idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1
|
161 |
+
yx_indices = hough[indices, :].astype('int32')
|
162 |
+
acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts
|
163 |
+
idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices
|
164 |
+
|
165 |
+
acc_map_np = acc_map
|
166 |
+
# acc_map = acc_map[None, :, :, None]
|
167 |
+
#
|
168 |
+
# ### fast suppression using tensorflow op
|
169 |
+
# acc_map = tf.constant(acc_map, dtype=tf.float32)
|
170 |
+
# max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5, 5), strides=1, padding='same')(acc_map)
|
171 |
+
# acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32)
|
172 |
+
# flatten_acc_map = tf.reshape(acc_map, [1, -1])
|
173 |
+
# topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts))
|
174 |
+
# _, h, w, _ = acc_map.shape
|
175 |
+
# y = tf.expand_dims(topk_indices // w, axis=-1)
|
176 |
+
# x = tf.expand_dims(topk_indices % w, axis=-1)
|
177 |
+
# yx = tf.concat([y, x], axis=-1)
|
178 |
+
|
179 |
+
### fast suppression using pytorch op
|
180 |
+
acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0)
|
181 |
+
_,_, h, w = acc_map.shape
|
182 |
+
max_acc_map = F.max_pool2d(acc_map,kernel_size=5, stride=1, padding=2)
|
183 |
+
acc_map = acc_map * ( (acc_map == max_acc_map).float() )
|
184 |
+
flatten_acc_map = acc_map.reshape([-1, ])
|
185 |
+
|
186 |
+
scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True)
|
187 |
+
yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1)
|
188 |
+
xx = torch.fmod(indices, w).unsqueeze(-1)
|
189 |
+
yx = torch.cat((yy, xx), dim=-1)
|
190 |
+
|
191 |
+
yx = yx.detach().cpu().numpy()
|
192 |
+
|
193 |
+
topk_values = scores.detach().cpu().numpy()
|
194 |
+
indices = idx_map[yx[:, 0], yx[:, 1]]
|
195 |
+
basis = 5 // 2
|
196 |
+
|
197 |
+
merged_segments = []
|
198 |
+
for yx_pt, max_indice, value in zip(yx, indices, topk_values):
|
199 |
+
y, x = yx_pt
|
200 |
+
if max_indice == -1 or value == 0:
|
201 |
+
continue
|
202 |
+
segment_list = []
|
203 |
+
for y_offset in range(-basis, basis + 1):
|
204 |
+
for x_offset in range(-basis, basis + 1):
|
205 |
+
indice = idx_map[y + y_offset, x + x_offset]
|
206 |
+
cnt = int(acc_map_np[y + y_offset, x + x_offset])
|
207 |
+
if indice != -1:
|
208 |
+
segment_list.append(segments[indice])
|
209 |
+
if cnt > 1:
|
210 |
+
check_cnt = 1
|
211 |
+
current_hough = hough[indice]
|
212 |
+
for new_indice, new_hough in enumerate(hough):
|
213 |
+
if (current_hough == new_hough).all() and indice != new_indice:
|
214 |
+
segment_list.append(segments[new_indice])
|
215 |
+
check_cnt += 1
|
216 |
+
if check_cnt == cnt:
|
217 |
+
break
|
218 |
+
group_segments = np.array(segment_list).reshape([-1, 2])
|
219 |
+
sorted_group_segments = np.sort(group_segments, axis=0)
|
220 |
+
x_min, y_min = sorted_group_segments[0, :]
|
221 |
+
x_max, y_max = sorted_group_segments[-1, :]
|
222 |
+
|
223 |
+
deg = theta[max_indice]
|
224 |
+
if deg >= 90:
|
225 |
+
merged_segments.append([x_min, y_max, x_max, y_min])
|
226 |
+
else:
|
227 |
+
merged_segments.append([x_min, y_min, x_max, y_max])
|
228 |
+
|
229 |
+
# 2. get intersections
|
230 |
+
new_segments = np.array(merged_segments) # (x1, y1, x2, y2)
|
231 |
+
start = new_segments[:, :2] # (x1, y1)
|
232 |
+
end = new_segments[:, 2:] # (x2, y2)
|
233 |
+
new_centers = (start + end) / 2.0
|
234 |
+
diff = start - end
|
235 |
+
dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1))
|
236 |
+
|
237 |
+
# ax + by = c
|
238 |
+
a = diff[:, 1]
|
239 |
+
b = -diff[:, 0]
|
240 |
+
c = a * start[:, 0] + b * start[:, 1]
|
241 |
+
pre_det = a[:, None] * b[None, :]
|
242 |
+
det = pre_det - np.transpose(pre_det)
|
243 |
+
|
244 |
+
pre_inter_y = a[:, None] * c[None, :]
|
245 |
+
inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10)
|
246 |
+
pre_inter_x = c[:, None] * b[None, :]
|
247 |
+
inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10)
|
248 |
+
inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32')
|
249 |
+
|
250 |
+
# 3. get corner information
|
251 |
+
# 3.1 get distance
|
252 |
+
'''
|
253 |
+
dist_segments:
|
254 |
+
| dist(0), dist(1), dist(2), ...|
|
255 |
+
dist_inter_to_segment1:
|
256 |
+
| dist(inter,0), dist(inter,0), dist(inter,0), ... |
|
257 |
+
| dist(inter,1), dist(inter,1), dist(inter,1), ... |
|
258 |
+
...
|
259 |
+
dist_inter_to_semgnet2:
|
260 |
+
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
|
261 |
+
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
|
262 |
+
...
|
263 |
+
'''
|
264 |
+
|
265 |
+
dist_inter_to_segment1_start = np.sqrt(
|
266 |
+
np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
267 |
+
dist_inter_to_segment1_end = np.sqrt(
|
268 |
+
np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
269 |
+
dist_inter_to_segment2_start = np.sqrt(
|
270 |
+
np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
271 |
+
dist_inter_to_segment2_end = np.sqrt(
|
272 |
+
np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
|
273 |
+
|
274 |
+
# sort ascending
|
275 |
+
dist_inter_to_segment1 = np.sort(
|
276 |
+
np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1),
|
277 |
+
axis=-1) # [n_batch, n_batch, 2]
|
278 |
+
dist_inter_to_segment2 = np.sort(
|
279 |
+
np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1),
|
280 |
+
axis=-1) # [n_batch, n_batch, 2]
|
281 |
+
|
282 |
+
# 3.2 get degree
|
283 |
+
inter_to_start = new_centers[:, None, :] - inter_pts
|
284 |
+
deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi
|
285 |
+
deg_inter_to_start[deg_inter_to_start < 0.0] += 360
|
286 |
+
inter_to_end = new_centers[None, :, :] - inter_pts
|
287 |
+
deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi
|
288 |
+
deg_inter_to_end[deg_inter_to_end < 0.0] += 360
|
289 |
+
|
290 |
+
'''
|
291 |
+
B -- G
|
292 |
+
| |
|
293 |
+
C -- R
|
294 |
+
B : blue / G: green / C: cyan / R: red
|
295 |
+
|
296 |
+
0 -- 1
|
297 |
+
| |
|
298 |
+
3 -- 2
|
299 |
+
'''
|
300 |
+
# rename variables
|
301 |
+
deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end
|
302 |
+
# sort deg ascending
|
303 |
+
deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1)
|
304 |
+
|
305 |
+
deg_diff_map = np.abs(deg1_map - deg2_map)
|
306 |
+
# we only consider the smallest degree of intersect
|
307 |
+
deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180]
|
308 |
+
|
309 |
+
# define available degree range
|
310 |
+
deg_range = [60, 120]
|
311 |
+
|
312 |
+
corner_dict = {corner_info: [] for corner_info in range(4)}
|
313 |
+
inter_points = []
|
314 |
+
for i in range(inter_pts.shape[0]):
|
315 |
+
for j in range(i + 1, inter_pts.shape[1]):
|
316 |
+
# i, j > line index, always i < j
|
317 |
+
x, y = inter_pts[i, j, :]
|
318 |
+
deg1, deg2 = deg_sort[i, j, :]
|
319 |
+
deg_diff = deg_diff_map[i, j]
|
320 |
+
|
321 |
+
check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1]
|
322 |
+
|
323 |
+
outside_ratio = params['outside_ratio'] # over ratio >>> drop it!
|
324 |
+
inside_ratio = params['inside_ratio'] # over ratio >>> drop it!
|
325 |
+
check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \
|
326 |
+
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \
|
327 |
+
(dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \
|
328 |
+
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \
|
329 |
+
((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \
|
330 |
+
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \
|
331 |
+
(dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \
|
332 |
+
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio))
|
333 |
+
|
334 |
+
if check_degree and check_distance:
|
335 |
+
corner_info = None
|
336 |
+
|
337 |
+
if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \
|
338 |
+
(deg2 >= 315 and deg1 >= 45 and deg1 <= 120):
|
339 |
+
corner_info, color_info = 0, 'blue'
|
340 |
+
elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225):
|
341 |
+
corner_info, color_info = 1, 'green'
|
342 |
+
elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315):
|
343 |
+
corner_info, color_info = 2, 'black'
|
344 |
+
elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \
|
345 |
+
(deg2 >= 315 and deg1 >= 225 and deg1 <= 315):
|
346 |
+
corner_info, color_info = 3, 'cyan'
|
347 |
+
else:
|
348 |
+
corner_info, color_info = 4, 'red' # we don't use it
|
349 |
+
continue
|
350 |
+
|
351 |
+
corner_dict[corner_info].append([x, y, i, j])
|
352 |
+
inter_points.append([x, y])
|
353 |
+
|
354 |
+
square_list = []
|
355 |
+
connect_list = []
|
356 |
+
segments_list = []
|
357 |
+
for corner0 in corner_dict[0]:
|
358 |
+
for corner1 in corner_dict[1]:
|
359 |
+
connect01 = False
|
360 |
+
for corner0_line in corner0[2:]:
|
361 |
+
if corner0_line in corner1[2:]:
|
362 |
+
connect01 = True
|
363 |
+
break
|
364 |
+
if connect01:
|
365 |
+
for corner2 in corner_dict[2]:
|
366 |
+
connect12 = False
|
367 |
+
for corner1_line in corner1[2:]:
|
368 |
+
if corner1_line in corner2[2:]:
|
369 |
+
connect12 = True
|
370 |
+
break
|
371 |
+
if connect12:
|
372 |
+
for corner3 in corner_dict[3]:
|
373 |
+
connect23 = False
|
374 |
+
for corner2_line in corner2[2:]:
|
375 |
+
if corner2_line in corner3[2:]:
|
376 |
+
connect23 = True
|
377 |
+
break
|
378 |
+
if connect23:
|
379 |
+
for corner3_line in corner3[2:]:
|
380 |
+
if corner3_line in corner0[2:]:
|
381 |
+
# SQUARE!!!
|
382 |
+
'''
|
383 |
+
0 -- 1
|
384 |
+
| |
|
385 |
+
3 -- 2
|
386 |
+
square_list:
|
387 |
+
order: 0 > 1 > 2 > 3
|
388 |
+
| x0, y0, x1, y1, x2, y2, x3, y3 |
|
389 |
+
| x0, y0, x1, y1, x2, y2, x3, y3 |
|
390 |
+
...
|
391 |
+
connect_list:
|
392 |
+
order: 01 > 12 > 23 > 30
|
393 |
+
| line_idx01, line_idx12, line_idx23, line_idx30 |
|
394 |
+
| line_idx01, line_idx12, line_idx23, line_idx30 |
|
395 |
+
...
|
396 |
+
segments_list:
|
397 |
+
order: 0 > 1 > 2 > 3
|
398 |
+
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
|
399 |
+
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
|
400 |
+
...
|
401 |
+
'''
|
402 |
+
square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2])
|
403 |
+
connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line])
|
404 |
+
segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:])
|
405 |
+
|
406 |
+
def check_outside_inside(segments_info, connect_idx):
|
407 |
+
# return 'outside or inside', min distance, cover_param, peri_param
|
408 |
+
if connect_idx == segments_info[0]:
|
409 |
+
check_dist_mat = dist_inter_to_segment1
|
410 |
+
else:
|
411 |
+
check_dist_mat = dist_inter_to_segment2
|
412 |
+
|
413 |
+
i, j = segments_info
|
414 |
+
min_dist, max_dist = check_dist_mat[i, j, :]
|
415 |
+
connect_dist = dist_segments[connect_idx]
|
416 |
+
if max_dist > connect_dist:
|
417 |
+
return 'outside', min_dist, 0, 1
|
418 |
+
else:
|
419 |
+
return 'inside', min_dist, -1, -1
|
420 |
+
|
421 |
+
top_square = None
|
422 |
+
|
423 |
+
try:
|
424 |
+
map_size = input_shape[0] / 2
|
425 |
+
squares = np.array(square_list).reshape([-1, 4, 2])
|
426 |
+
score_array = []
|
427 |
+
connect_array = np.array(connect_list)
|
428 |
+
segments_array = np.array(segments_list).reshape([-1, 4, 2])
|
429 |
+
|
430 |
+
# get degree of corners:
|
431 |
+
squares_rollup = np.roll(squares, 1, axis=1)
|
432 |
+
squares_rolldown = np.roll(squares, -1, axis=1)
|
433 |
+
vec1 = squares_rollup - squares
|
434 |
+
normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10)
|
435 |
+
vec2 = squares_rolldown - squares
|
436 |
+
normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10)
|
437 |
+
inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4]
|
438 |
+
squares_degree = np.arccos(inner_products) * 180 / np.pi # [n_squares, 4]
|
439 |
+
|
440 |
+
# get square score
|
441 |
+
overlap_scores = []
|
442 |
+
degree_scores = []
|
443 |
+
length_scores = []
|
444 |
+
|
445 |
+
for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree):
|
446 |
+
'''
|
447 |
+
0 -- 1
|
448 |
+
| |
|
449 |
+
3 -- 2
|
450 |
+
|
451 |
+
# segments: [4, 2]
|
452 |
+
# connects: [4]
|
453 |
+
'''
|
454 |
+
|
455 |
+
###################################### OVERLAP SCORES
|
456 |
+
cover = 0
|
457 |
+
perimeter = 0
|
458 |
+
# check 0 > 1 > 2 > 3
|
459 |
+
square_length = []
|
460 |
+
|
461 |
+
for start_idx in range(4):
|
462 |
+
end_idx = (start_idx + 1) % 4
|
463 |
+
|
464 |
+
connect_idx = connects[start_idx] # segment idx of segment01
|
465 |
+
start_segments = segments[start_idx]
|
466 |
+
end_segments = segments[end_idx]
|
467 |
+
|
468 |
+
start_point = square[start_idx]
|
469 |
+
end_point = square[end_idx]
|
470 |
+
|
471 |
+
# check whether outside or inside
|
472 |
+
start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments,
|
473 |
+
connect_idx)
|
474 |
+
end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx)
|
475 |
+
|
476 |
+
cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min
|
477 |
+
perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min
|
478 |
+
|
479 |
+
square_length.append(
|
480 |
+
dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min)
|
481 |
+
|
482 |
+
overlap_scores.append(cover / perimeter)
|
483 |
+
######################################
|
484 |
+
###################################### DEGREE SCORES
|
485 |
+
'''
|
486 |
+
deg0 vs deg2
|
487 |
+
deg1 vs deg3
|
488 |
+
'''
|
489 |
+
deg0, deg1, deg2, deg3 = degree
|
490 |
+
deg_ratio1 = deg0 / deg2
|
491 |
+
if deg_ratio1 > 1.0:
|
492 |
+
deg_ratio1 = 1 / deg_ratio1
|
493 |
+
deg_ratio2 = deg1 / deg3
|
494 |
+
if deg_ratio2 > 1.0:
|
495 |
+
deg_ratio2 = 1 / deg_ratio2
|
496 |
+
degree_scores.append((deg_ratio1 + deg_ratio2) / 2)
|
497 |
+
######################################
|
498 |
+
###################################### LENGTH SCORES
|
499 |
+
'''
|
500 |
+
len0 vs len2
|
501 |
+
len1 vs len3
|
502 |
+
'''
|
503 |
+
len0, len1, len2, len3 = square_length
|
504 |
+
len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0
|
505 |
+
len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1
|
506 |
+
length_scores.append((len_ratio1 + len_ratio2) / 2)
|
507 |
+
|
508 |
+
######################################
|
509 |
+
|
510 |
+
overlap_scores = np.array(overlap_scores)
|
511 |
+
overlap_scores /= np.max(overlap_scores)
|
512 |
+
|
513 |
+
degree_scores = np.array(degree_scores)
|
514 |
+
# degree_scores /= np.max(degree_scores)
|
515 |
+
|
516 |
+
length_scores = np.array(length_scores)
|
517 |
+
|
518 |
+
###################################### AREA SCORES
|
519 |
+
area_scores = np.reshape(squares, [-1, 4, 2])
|
520 |
+
area_x = area_scores[:, :, 0]
|
521 |
+
area_y = area_scores[:, :, 1]
|
522 |
+
correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0]
|
523 |
+
area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1)
|
524 |
+
area_scores = 0.5 * np.abs(area_scores + correction)
|
525 |
+
area_scores /= (map_size * map_size) # np.max(area_scores)
|
526 |
+
######################################
|
527 |
+
|
528 |
+
###################################### CENTER SCORES
|
529 |
+
centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2]
|
530 |
+
# squares: [n, 4, 2]
|
531 |
+
square_centers = np.mean(squares, axis=1) # [n, 2]
|
532 |
+
center2center = np.sqrt(np.sum((centers - square_centers) ** 2))
|
533 |
+
center_scores = center2center / (map_size / np.sqrt(2.0))
|
534 |
+
|
535 |
+
'''
|
536 |
+
score_w = [overlap, degree, area, center, length]
|
537 |
+
'''
|
538 |
+
score_w = [0.0, 1.0, 10.0, 0.5, 1.0]
|
539 |
+
score_array = params['w_overlap'] * overlap_scores \
|
540 |
+
+ params['w_degree'] * degree_scores \
|
541 |
+
+ params['w_area'] * area_scores \
|
542 |
+
- params['w_center'] * center_scores \
|
543 |
+
+ params['w_length'] * length_scores
|
544 |
+
|
545 |
+
best_square = []
|
546 |
+
|
547 |
+
sorted_idx = np.argsort(score_array)[::-1]
|
548 |
+
score_array = score_array[sorted_idx]
|
549 |
+
squares = squares[sorted_idx]
|
550 |
+
|
551 |
+
except Exception as e:
|
552 |
+
pass
|
553 |
+
|
554 |
+
'''return list
|
555 |
+
merged_lines, squares, scores
|
556 |
+
'''
|
557 |
+
|
558 |
+
try:
|
559 |
+
new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1]
|
560 |
+
new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0]
|
561 |
+
new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1]
|
562 |
+
new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0]
|
563 |
+
except:
|
564 |
+
new_segments = []
|
565 |
+
|
566 |
+
try:
|
567 |
+
squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1]
|
568 |
+
squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0]
|
569 |
+
except:
|
570 |
+
squares = []
|
571 |
+
score_array = []
|
572 |
+
|
573 |
+
try:
|
574 |
+
inter_points = np.array(inter_points)
|
575 |
+
inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1]
|
576 |
+
inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0]
|
577 |
+
except:
|
578 |
+
inter_points = []
|
579 |
+
|
580 |
+
return new_segments, squares, score_array, inter_points
|
annotator/openpose/__init__.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
from . import util
|
7 |
+
from .body import Body
|
8 |
+
from .hand import Hand
|
9 |
+
from annotator.util import annotator_ckpts_path
|
10 |
+
|
11 |
+
|
12 |
+
body_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/body_pose_model.pth"
|
13 |
+
hand_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/hand_pose_model.pth"
|
14 |
+
|
15 |
+
|
16 |
+
class OpenposeDetector:
|
17 |
+
def __init__(self):
|
18 |
+
body_modelpath = os.path.join(annotator_ckpts_path, "body_pose_model.pth")
|
19 |
+
hand_modelpath = os.path.join(annotator_ckpts_path, "hand_pose_model.pth")
|
20 |
+
|
21 |
+
if not os.path.exists(hand_modelpath):
|
22 |
+
from basicsr.utils.download_util import load_file_from_url
|
23 |
+
load_file_from_url(body_model_path, model_dir=annotator_ckpts_path)
|
24 |
+
load_file_from_url(hand_model_path, model_dir=annotator_ckpts_path)
|
25 |
+
|
26 |
+
self.body_estimation = Body(body_modelpath)
|
27 |
+
self.hand_estimation = Hand(hand_modelpath)
|
28 |
+
|
29 |
+
def __call__(self, oriImg, hand=False):
|
30 |
+
oriImg = oriImg[:, :, ::-1].copy()
|
31 |
+
with torch.no_grad():
|
32 |
+
candidate, subset = self.body_estimation(oriImg)
|
33 |
+
canvas = np.zeros_like(oriImg)
|
34 |
+
canvas = util.draw_bodypose(canvas, candidate, subset)
|
35 |
+
if hand:
|
36 |
+
hands_list = util.handDetect(candidate, subset, oriImg)
|
37 |
+
all_hand_peaks = []
|
38 |
+
for x, y, w, is_left in hands_list:
|
39 |
+
peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :])
|
40 |
+
peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x)
|
41 |
+
peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y)
|
42 |
+
all_hand_peaks.append(peaks)
|
43 |
+
canvas = util.draw_handpose(canvas, all_hand_peaks)
|
44 |
+
return canvas, dict(candidate=candidate.tolist(), subset=subset.tolist())
|
annotator/openpose/body.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
from scipy.ndimage.filters import gaussian_filter
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import matplotlib
|
8 |
+
import torch
|
9 |
+
from torchvision import transforms
|
10 |
+
|
11 |
+
from . import util
|
12 |
+
from .model import bodypose_model
|
13 |
+
|
14 |
+
class Body(object):
|
15 |
+
def __init__(self, model_path):
|
16 |
+
self.model = bodypose_model()
|
17 |
+
if torch.cuda.is_available():
|
18 |
+
self.model = self.model.cuda()
|
19 |
+
print('cuda')
|
20 |
+
model_dict = util.transfer(self.model, torch.load(model_path))
|
21 |
+
self.model.load_state_dict(model_dict)
|
22 |
+
self.model.eval()
|
23 |
+
|
24 |
+
def __call__(self, oriImg):
|
25 |
+
# scale_search = [0.5, 1.0, 1.5, 2.0]
|
26 |
+
scale_search = [0.5]
|
27 |
+
boxsize = 368
|
28 |
+
stride = 8
|
29 |
+
padValue = 128
|
30 |
+
thre1 = 0.1
|
31 |
+
thre2 = 0.05
|
32 |
+
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
|
33 |
+
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
|
34 |
+
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
|
35 |
+
|
36 |
+
for m in range(len(multiplier)):
|
37 |
+
scale = multiplier[m]
|
38 |
+
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
39 |
+
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
|
40 |
+
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
|
41 |
+
im = np.ascontiguousarray(im)
|
42 |
+
|
43 |
+
data = torch.from_numpy(im).float()
|
44 |
+
if torch.cuda.is_available():
|
45 |
+
data = data.cuda()
|
46 |
+
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
|
47 |
+
with torch.no_grad():
|
48 |
+
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
|
49 |
+
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
|
50 |
+
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
|
51 |
+
|
52 |
+
# extract outputs, resize, and remove padding
|
53 |
+
# heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps
|
54 |
+
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps
|
55 |
+
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
56 |
+
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
57 |
+
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
58 |
+
|
59 |
+
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
|
60 |
+
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs
|
61 |
+
paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
62 |
+
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
63 |
+
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
64 |
+
|
65 |
+
heatmap_avg += heatmap_avg + heatmap / len(multiplier)
|
66 |
+
paf_avg += + paf / len(multiplier)
|
67 |
+
|
68 |
+
all_peaks = []
|
69 |
+
peak_counter = 0
|
70 |
+
|
71 |
+
for part in range(18):
|
72 |
+
map_ori = heatmap_avg[:, :, part]
|
73 |
+
one_heatmap = gaussian_filter(map_ori, sigma=3)
|
74 |
+
|
75 |
+
map_left = np.zeros(one_heatmap.shape)
|
76 |
+
map_left[1:, :] = one_heatmap[:-1, :]
|
77 |
+
map_right = np.zeros(one_heatmap.shape)
|
78 |
+
map_right[:-1, :] = one_heatmap[1:, :]
|
79 |
+
map_up = np.zeros(one_heatmap.shape)
|
80 |
+
map_up[:, 1:] = one_heatmap[:, :-1]
|
81 |
+
map_down = np.zeros(one_heatmap.shape)
|
82 |
+
map_down[:, :-1] = one_heatmap[:, 1:]
|
83 |
+
|
84 |
+
peaks_binary = np.logical_and.reduce(
|
85 |
+
(one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1))
|
86 |
+
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
|
87 |
+
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
|
88 |
+
peak_id = range(peak_counter, peak_counter + len(peaks))
|
89 |
+
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]
|
90 |
+
|
91 |
+
all_peaks.append(peaks_with_score_and_id)
|
92 |
+
peak_counter += len(peaks)
|
93 |
+
|
94 |
+
# find connection in the specified sequence, center 29 is in the position 15
|
95 |
+
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
96 |
+
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
97 |
+
[1, 16], [16, 18], [3, 17], [6, 18]]
|
98 |
+
# the middle joints heatmap correpondence
|
99 |
+
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
|
100 |
+
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
|
101 |
+
[55, 56], [37, 38], [45, 46]]
|
102 |
+
|
103 |
+
connection_all = []
|
104 |
+
special_k = []
|
105 |
+
mid_num = 10
|
106 |
+
|
107 |
+
for k in range(len(mapIdx)):
|
108 |
+
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
|
109 |
+
candA = all_peaks[limbSeq[k][0] - 1]
|
110 |
+
candB = all_peaks[limbSeq[k][1] - 1]
|
111 |
+
nA = len(candA)
|
112 |
+
nB = len(candB)
|
113 |
+
indexA, indexB = limbSeq[k]
|
114 |
+
if (nA != 0 and nB != 0):
|
115 |
+
connection_candidate = []
|
116 |
+
for i in range(nA):
|
117 |
+
for j in range(nB):
|
118 |
+
vec = np.subtract(candB[j][:2], candA[i][:2])
|
119 |
+
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
|
120 |
+
norm = max(0.001, norm)
|
121 |
+
vec = np.divide(vec, norm)
|
122 |
+
|
123 |
+
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
|
124 |
+
np.linspace(candA[i][1], candB[j][1], num=mid_num)))
|
125 |
+
|
126 |
+
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
|
127 |
+
for I in range(len(startend))])
|
128 |
+
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
|
129 |
+
for I in range(len(startend))])
|
130 |
+
|
131 |
+
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
|
132 |
+
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
|
133 |
+
0.5 * oriImg.shape[0] / norm - 1, 0)
|
134 |
+
criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
|
135 |
+
criterion2 = score_with_dist_prior > 0
|
136 |
+
if criterion1 and criterion2:
|
137 |
+
connection_candidate.append(
|
138 |
+
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
|
139 |
+
|
140 |
+
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
|
141 |
+
connection = np.zeros((0, 5))
|
142 |
+
for c in range(len(connection_candidate)):
|
143 |
+
i, j, s = connection_candidate[c][0:3]
|
144 |
+
if (i not in connection[:, 3] and j not in connection[:, 4]):
|
145 |
+
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
|
146 |
+
if (len(connection) >= min(nA, nB)):
|
147 |
+
break
|
148 |
+
|
149 |
+
connection_all.append(connection)
|
150 |
+
else:
|
151 |
+
special_k.append(k)
|
152 |
+
connection_all.append([])
|
153 |
+
|
154 |
+
# last number in each row is the total parts number of that person
|
155 |
+
# the second last number in each row is the score of the overall configuration
|
156 |
+
subset = -1 * np.ones((0, 20))
|
157 |
+
candidate = np.array([item for sublist in all_peaks for item in sublist])
|
158 |
+
|
159 |
+
for k in range(len(mapIdx)):
|
160 |
+
if k not in special_k:
|
161 |
+
partAs = connection_all[k][:, 0]
|
162 |
+
partBs = connection_all[k][:, 1]
|
163 |
+
indexA, indexB = np.array(limbSeq[k]) - 1
|
164 |
+
|
165 |
+
for i in range(len(connection_all[k])): # = 1:size(temp,1)
|
166 |
+
found = 0
|
167 |
+
subset_idx = [-1, -1]
|
168 |
+
for j in range(len(subset)): # 1:size(subset,1):
|
169 |
+
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
|
170 |
+
subset_idx[found] = j
|
171 |
+
found += 1
|
172 |
+
|
173 |
+
if found == 1:
|
174 |
+
j = subset_idx[0]
|
175 |
+
if subset[j][indexB] != partBs[i]:
|
176 |
+
subset[j][indexB] = partBs[i]
|
177 |
+
subset[j][-1] += 1
|
178 |
+
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
|
179 |
+
elif found == 2: # if found 2 and disjoint, merge them
|
180 |
+
j1, j2 = subset_idx
|
181 |
+
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
|
182 |
+
if len(np.nonzero(membership == 2)[0]) == 0: # merge
|
183 |
+
subset[j1][:-2] += (subset[j2][:-2] + 1)
|
184 |
+
subset[j1][-2:] += subset[j2][-2:]
|
185 |
+
subset[j1][-2] += connection_all[k][i][2]
|
186 |
+
subset = np.delete(subset, j2, 0)
|
187 |
+
else: # as like found == 1
|
188 |
+
subset[j1][indexB] = partBs[i]
|
189 |
+
subset[j1][-1] += 1
|
190 |
+
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
|
191 |
+
|
192 |
+
# if find no partA in the subset, create a new subset
|
193 |
+
elif not found and k < 17:
|
194 |
+
row = -1 * np.ones(20)
|
195 |
+
row[indexA] = partAs[i]
|
196 |
+
row[indexB] = partBs[i]
|
197 |
+
row[-1] = 2
|
198 |
+
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
|
199 |
+
subset = np.vstack([subset, row])
|
200 |
+
# delete some rows of subset which has few parts occur
|
201 |
+
deleteIdx = []
|
202 |
+
for i in range(len(subset)):
|
203 |
+
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
|
204 |
+
deleteIdx.append(i)
|
205 |
+
subset = np.delete(subset, deleteIdx, axis=0)
|
206 |
+
|
207 |
+
# subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
|
208 |
+
# candidate: x, y, score, id
|
209 |
+
return candidate, subset
|
210 |
+
|
211 |
+
if __name__ == "__main__":
|
212 |
+
body_estimation = Body('../model/body_pose_model.pth')
|
213 |
+
|
214 |
+
test_image = '../images/ski.jpg'
|
215 |
+
oriImg = cv2.imread(test_image) # B,G,R order
|
216 |
+
candidate, subset = body_estimation(oriImg)
|
217 |
+
canvas = util.draw_bodypose(oriImg, candidate, subset)
|
218 |
+
plt.imshow(canvas[:, :, [2, 1, 0]])
|
219 |
+
plt.show()
|
annotator/openpose/hand.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import math
|
5 |
+
import time
|
6 |
+
from scipy.ndimage.filters import gaussian_filter
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import matplotlib
|
9 |
+
import torch
|
10 |
+
from skimage.measure import label
|
11 |
+
|
12 |
+
from .model import handpose_model
|
13 |
+
from . import util
|
14 |
+
|
15 |
+
class Hand(object):
|
16 |
+
def __init__(self, model_path):
|
17 |
+
self.model = handpose_model()
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
self.model = self.model.cuda()
|
20 |
+
print('cuda')
|
21 |
+
model_dict = util.transfer(self.model, torch.load(model_path))
|
22 |
+
self.model.load_state_dict(model_dict)
|
23 |
+
self.model.eval()
|
24 |
+
|
25 |
+
def __call__(self, oriImg):
|
26 |
+
scale_search = [0.5, 1.0, 1.5, 2.0]
|
27 |
+
# scale_search = [0.5]
|
28 |
+
boxsize = 368
|
29 |
+
stride = 8
|
30 |
+
padValue = 128
|
31 |
+
thre = 0.05
|
32 |
+
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
|
33 |
+
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22))
|
34 |
+
# paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
|
35 |
+
|
36 |
+
for m in range(len(multiplier)):
|
37 |
+
scale = multiplier[m]
|
38 |
+
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
39 |
+
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
|
40 |
+
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
|
41 |
+
im = np.ascontiguousarray(im)
|
42 |
+
|
43 |
+
data = torch.from_numpy(im).float()
|
44 |
+
if torch.cuda.is_available():
|
45 |
+
data = data.cuda()
|
46 |
+
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
|
47 |
+
with torch.no_grad():
|
48 |
+
output = self.model(data).cpu().numpy()
|
49 |
+
# output = self.model(data).numpy()q
|
50 |
+
|
51 |
+
# extract outputs, resize, and remove padding
|
52 |
+
heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps
|
53 |
+
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
54 |
+
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
55 |
+
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
56 |
+
|
57 |
+
heatmap_avg += heatmap / len(multiplier)
|
58 |
+
|
59 |
+
all_peaks = []
|
60 |
+
for part in range(21):
|
61 |
+
map_ori = heatmap_avg[:, :, part]
|
62 |
+
one_heatmap = gaussian_filter(map_ori, sigma=3)
|
63 |
+
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8)
|
64 |
+
# 全部小于阈值
|
65 |
+
if np.sum(binary) == 0:
|
66 |
+
all_peaks.append([0, 0])
|
67 |
+
continue
|
68 |
+
label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim)
|
69 |
+
max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1
|
70 |
+
label_img[label_img != max_index] = 0
|
71 |
+
map_ori[label_img == 0] = 0
|
72 |
+
|
73 |
+
y, x = util.npmax(map_ori)
|
74 |
+
all_peaks.append([x, y])
|
75 |
+
return np.array(all_peaks)
|
76 |
+
|
77 |
+
if __name__ == "__main__":
|
78 |
+
hand_estimation = Hand('../model/hand_pose_model.pth')
|
79 |
+
|
80 |
+
# test_image = '../images/hand.jpg'
|
81 |
+
test_image = '../images/hand.jpg'
|
82 |
+
oriImg = cv2.imread(test_image) # B,G,R order
|
83 |
+
peaks = hand_estimation(oriImg)
|
84 |
+
canvas = util.draw_handpose(oriImg, peaks, True)
|
85 |
+
cv2.imshow('', canvas)
|
86 |
+
cv2.waitKey(0)
|
annotator/openpose/model.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from collections import OrderedDict
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
def make_layers(block, no_relu_layers):
|
8 |
+
layers = []
|
9 |
+
for layer_name, v in block.items():
|
10 |
+
if 'pool' in layer_name:
|
11 |
+
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1],
|
12 |
+
padding=v[2])
|
13 |
+
layers.append((layer_name, layer))
|
14 |
+
else:
|
15 |
+
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1],
|
16 |
+
kernel_size=v[2], stride=v[3],
|
17 |
+
padding=v[4])
|
18 |
+
layers.append((layer_name, conv2d))
|
19 |
+
if layer_name not in no_relu_layers:
|
20 |
+
layers.append(('relu_'+layer_name, nn.ReLU(inplace=True)))
|
21 |
+
|
22 |
+
return nn.Sequential(OrderedDict(layers))
|
23 |
+
|
24 |
+
class bodypose_model(nn.Module):
|
25 |
+
def __init__(self):
|
26 |
+
super(bodypose_model, self).__init__()
|
27 |
+
|
28 |
+
# these layers have no relu layer
|
29 |
+
no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\
|
30 |
+
'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\
|
31 |
+
'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\
|
32 |
+
'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1']
|
33 |
+
blocks = {}
|
34 |
+
block0 = OrderedDict([
|
35 |
+
('conv1_1', [3, 64, 3, 1, 1]),
|
36 |
+
('conv1_2', [64, 64, 3, 1, 1]),
|
37 |
+
('pool1_stage1', [2, 2, 0]),
|
38 |
+
('conv2_1', [64, 128, 3, 1, 1]),
|
39 |
+
('conv2_2', [128, 128, 3, 1, 1]),
|
40 |
+
('pool2_stage1', [2, 2, 0]),
|
41 |
+
('conv3_1', [128, 256, 3, 1, 1]),
|
42 |
+
('conv3_2', [256, 256, 3, 1, 1]),
|
43 |
+
('conv3_3', [256, 256, 3, 1, 1]),
|
44 |
+
('conv3_4', [256, 256, 3, 1, 1]),
|
45 |
+
('pool3_stage1', [2, 2, 0]),
|
46 |
+
('conv4_1', [256, 512, 3, 1, 1]),
|
47 |
+
('conv4_2', [512, 512, 3, 1, 1]),
|
48 |
+
('conv4_3_CPM', [512, 256, 3, 1, 1]),
|
49 |
+
('conv4_4_CPM', [256, 128, 3, 1, 1])
|
50 |
+
])
|
51 |
+
|
52 |
+
|
53 |
+
# Stage 1
|
54 |
+
block1_1 = OrderedDict([
|
55 |
+
('conv5_1_CPM_L1', [128, 128, 3, 1, 1]),
|
56 |
+
('conv5_2_CPM_L1', [128, 128, 3, 1, 1]),
|
57 |
+
('conv5_3_CPM_L1', [128, 128, 3, 1, 1]),
|
58 |
+
('conv5_4_CPM_L1', [128, 512, 1, 1, 0]),
|
59 |
+
('conv5_5_CPM_L1', [512, 38, 1, 1, 0])
|
60 |
+
])
|
61 |
+
|
62 |
+
block1_2 = OrderedDict([
|
63 |
+
('conv5_1_CPM_L2', [128, 128, 3, 1, 1]),
|
64 |
+
('conv5_2_CPM_L2', [128, 128, 3, 1, 1]),
|
65 |
+
('conv5_3_CPM_L2', [128, 128, 3, 1, 1]),
|
66 |
+
('conv5_4_CPM_L2', [128, 512, 1, 1, 0]),
|
67 |
+
('conv5_5_CPM_L2', [512, 19, 1, 1, 0])
|
68 |
+
])
|
69 |
+
blocks['block1_1'] = block1_1
|
70 |
+
blocks['block1_2'] = block1_2
|
71 |
+
|
72 |
+
self.model0 = make_layers(block0, no_relu_layers)
|
73 |
+
|
74 |
+
# Stages 2 - 6
|
75 |
+
for i in range(2, 7):
|
76 |
+
blocks['block%d_1' % i] = OrderedDict([
|
77 |
+
('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]),
|
78 |
+
('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
79 |
+
('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
80 |
+
('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
81 |
+
('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
82 |
+
('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]),
|
83 |
+
('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0])
|
84 |
+
])
|
85 |
+
|
86 |
+
blocks['block%d_2' % i] = OrderedDict([
|
87 |
+
('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]),
|
88 |
+
('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
89 |
+
('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
90 |
+
('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
91 |
+
('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
92 |
+
('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]),
|
93 |
+
('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0])
|
94 |
+
])
|
95 |
+
|
96 |
+
for k in blocks.keys():
|
97 |
+
blocks[k] = make_layers(blocks[k], no_relu_layers)
|
98 |
+
|
99 |
+
self.model1_1 = blocks['block1_1']
|
100 |
+
self.model2_1 = blocks['block2_1']
|
101 |
+
self.model3_1 = blocks['block3_1']
|
102 |
+
self.model4_1 = blocks['block4_1']
|
103 |
+
self.model5_1 = blocks['block5_1']
|
104 |
+
self.model6_1 = blocks['block6_1']
|
105 |
+
|
106 |
+
self.model1_2 = blocks['block1_2']
|
107 |
+
self.model2_2 = blocks['block2_2']
|
108 |
+
self.model3_2 = blocks['block3_2']
|
109 |
+
self.model4_2 = blocks['block4_2']
|
110 |
+
self.model5_2 = blocks['block5_2']
|
111 |
+
self.model6_2 = blocks['block6_2']
|
112 |
+
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
|
116 |
+
out1 = self.model0(x)
|
117 |
+
|
118 |
+
out1_1 = self.model1_1(out1)
|
119 |
+
out1_2 = self.model1_2(out1)
|
120 |
+
out2 = torch.cat([out1_1, out1_2, out1], 1)
|
121 |
+
|
122 |
+
out2_1 = self.model2_1(out2)
|
123 |
+
out2_2 = self.model2_2(out2)
|
124 |
+
out3 = torch.cat([out2_1, out2_2, out1], 1)
|
125 |
+
|
126 |
+
out3_1 = self.model3_1(out3)
|
127 |
+
out3_2 = self.model3_2(out3)
|
128 |
+
out4 = torch.cat([out3_1, out3_2, out1], 1)
|
129 |
+
|
130 |
+
out4_1 = self.model4_1(out4)
|
131 |
+
out4_2 = self.model4_2(out4)
|
132 |
+
out5 = torch.cat([out4_1, out4_2, out1], 1)
|
133 |
+
|
134 |
+
out5_1 = self.model5_1(out5)
|
135 |
+
out5_2 = self.model5_2(out5)
|
136 |
+
out6 = torch.cat([out5_1, out5_2, out1], 1)
|
137 |
+
|
138 |
+
out6_1 = self.model6_1(out6)
|
139 |
+
out6_2 = self.model6_2(out6)
|
140 |
+
|
141 |
+
return out6_1, out6_2
|
142 |
+
|
143 |
+
class handpose_model(nn.Module):
|
144 |
+
def __init__(self):
|
145 |
+
super(handpose_model, self).__init__()
|
146 |
+
|
147 |
+
# these layers have no relu layer
|
148 |
+
no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\
|
149 |
+
'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6']
|
150 |
+
# stage 1
|
151 |
+
block1_0 = OrderedDict([
|
152 |
+
('conv1_1', [3, 64, 3, 1, 1]),
|
153 |
+
('conv1_2', [64, 64, 3, 1, 1]),
|
154 |
+
('pool1_stage1', [2, 2, 0]),
|
155 |
+
('conv2_1', [64, 128, 3, 1, 1]),
|
156 |
+
('conv2_2', [128, 128, 3, 1, 1]),
|
157 |
+
('pool2_stage1', [2, 2, 0]),
|
158 |
+
('conv3_1', [128, 256, 3, 1, 1]),
|
159 |
+
('conv3_2', [256, 256, 3, 1, 1]),
|
160 |
+
('conv3_3', [256, 256, 3, 1, 1]),
|
161 |
+
('conv3_4', [256, 256, 3, 1, 1]),
|
162 |
+
('pool3_stage1', [2, 2, 0]),
|
163 |
+
('conv4_1', [256, 512, 3, 1, 1]),
|
164 |
+
('conv4_2', [512, 512, 3, 1, 1]),
|
165 |
+
('conv4_3', [512, 512, 3, 1, 1]),
|
166 |
+
('conv4_4', [512, 512, 3, 1, 1]),
|
167 |
+
('conv5_1', [512, 512, 3, 1, 1]),
|
168 |
+
('conv5_2', [512, 512, 3, 1, 1]),
|
169 |
+
('conv5_3_CPM', [512, 128, 3, 1, 1])
|
170 |
+
])
|
171 |
+
|
172 |
+
block1_1 = OrderedDict([
|
173 |
+
('conv6_1_CPM', [128, 512, 1, 1, 0]),
|
174 |
+
('conv6_2_CPM', [512, 22, 1, 1, 0])
|
175 |
+
])
|
176 |
+
|
177 |
+
blocks = {}
|
178 |
+
blocks['block1_0'] = block1_0
|
179 |
+
blocks['block1_1'] = block1_1
|
180 |
+
|
181 |
+
# stage 2-6
|
182 |
+
for i in range(2, 7):
|
183 |
+
blocks['block%d' % i] = OrderedDict([
|
184 |
+
('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]),
|
185 |
+
('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]),
|
186 |
+
('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]),
|
187 |
+
('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]),
|
188 |
+
('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]),
|
189 |
+
('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]),
|
190 |
+
('Mconv7_stage%d' % i, [128, 22, 1, 1, 0])
|
191 |
+
])
|
192 |
+
|
193 |
+
for k in blocks.keys():
|
194 |
+
blocks[k] = make_layers(blocks[k], no_relu_layers)
|
195 |
+
|
196 |
+
self.model1_0 = blocks['block1_0']
|
197 |
+
self.model1_1 = blocks['block1_1']
|
198 |
+
self.model2 = blocks['block2']
|
199 |
+
self.model3 = blocks['block3']
|
200 |
+
self.model4 = blocks['block4']
|
201 |
+
self.model5 = blocks['block5']
|
202 |
+
self.model6 = blocks['block6']
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
out1_0 = self.model1_0(x)
|
206 |
+
out1_1 = self.model1_1(out1_0)
|
207 |
+
concat_stage2 = torch.cat([out1_1, out1_0], 1)
|
208 |
+
out_stage2 = self.model2(concat_stage2)
|
209 |
+
concat_stage3 = torch.cat([out_stage2, out1_0], 1)
|
210 |
+
out_stage3 = self.model3(concat_stage3)
|
211 |
+
concat_stage4 = torch.cat([out_stage3, out1_0], 1)
|
212 |
+
out_stage4 = self.model4(concat_stage4)
|
213 |
+
concat_stage5 = torch.cat([out_stage4, out1_0], 1)
|
214 |
+
out_stage5 = self.model5(concat_stage5)
|
215 |
+
concat_stage6 = torch.cat([out_stage5, out1_0], 1)
|
216 |
+
out_stage6 = self.model6(concat_stage6)
|
217 |
+
return out_stage6
|
218 |
+
|
219 |
+
|
annotator/openpose/util.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib
|
4 |
+
import cv2
|
5 |
+
|
6 |
+
|
7 |
+
def padRightDownCorner(img, stride, padValue):
|
8 |
+
h = img.shape[0]
|
9 |
+
w = img.shape[1]
|
10 |
+
|
11 |
+
pad = 4 * [None]
|
12 |
+
pad[0] = 0 # up
|
13 |
+
pad[1] = 0 # left
|
14 |
+
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
|
15 |
+
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
|
16 |
+
|
17 |
+
img_padded = img
|
18 |
+
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
|
19 |
+
img_padded = np.concatenate((pad_up, img_padded), axis=0)
|
20 |
+
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
|
21 |
+
img_padded = np.concatenate((pad_left, img_padded), axis=1)
|
22 |
+
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
|
23 |
+
img_padded = np.concatenate((img_padded, pad_down), axis=0)
|
24 |
+
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
|
25 |
+
img_padded = np.concatenate((img_padded, pad_right), axis=1)
|
26 |
+
|
27 |
+
return img_padded, pad
|
28 |
+
|
29 |
+
# transfer caffe model to pytorch which will match the layer name
|
30 |
+
def transfer(model, model_weights):
|
31 |
+
transfered_model_weights = {}
|
32 |
+
for weights_name in model.state_dict().keys():
|
33 |
+
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
|
34 |
+
return transfered_model_weights
|
35 |
+
|
36 |
+
# draw the body keypoint and lims
|
37 |
+
def draw_bodypose(canvas, candidate, subset):
|
38 |
+
stickwidth = 4
|
39 |
+
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
40 |
+
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
41 |
+
[1, 16], [16, 18], [3, 17], [6, 18]]
|
42 |
+
|
43 |
+
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
|
44 |
+
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
|
45 |
+
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
46 |
+
for i in range(18):
|
47 |
+
for n in range(len(subset)):
|
48 |
+
index = int(subset[n][i])
|
49 |
+
if index == -1:
|
50 |
+
continue
|
51 |
+
x, y = candidate[index][0:2]
|
52 |
+
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
|
53 |
+
for i in range(17):
|
54 |
+
for n in range(len(subset)):
|
55 |
+
index = subset[n][np.array(limbSeq[i]) - 1]
|
56 |
+
if -1 in index:
|
57 |
+
continue
|
58 |
+
cur_canvas = canvas.copy()
|
59 |
+
Y = candidate[index.astype(int), 0]
|
60 |
+
X = candidate[index.astype(int), 1]
|
61 |
+
mX = np.mean(X)
|
62 |
+
mY = np.mean(Y)
|
63 |
+
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
|
64 |
+
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
65 |
+
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
66 |
+
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
|
67 |
+
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
|
68 |
+
# plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]])
|
69 |
+
# plt.imshow(canvas[:, :, [2, 1, 0]])
|
70 |
+
return canvas
|
71 |
+
|
72 |
+
|
73 |
+
# image drawed by opencv is not good.
|
74 |
+
def draw_handpose(canvas, all_hand_peaks, show_number=False):
|
75 |
+
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
|
76 |
+
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
|
77 |
+
|
78 |
+
for peaks in all_hand_peaks:
|
79 |
+
for ie, e in enumerate(edges):
|
80 |
+
if np.sum(np.all(peaks[e], axis=1)==0)==0:
|
81 |
+
x1, y1 = peaks[e[0]]
|
82 |
+
x2, y2 = peaks[e[1]]
|
83 |
+
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2)
|
84 |
+
|
85 |
+
for i, keyponit in enumerate(peaks):
|
86 |
+
x, y = keyponit
|
87 |
+
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
|
88 |
+
if show_number:
|
89 |
+
cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA)
|
90 |
+
return canvas
|
91 |
+
|
92 |
+
# detect hand according to body pose keypoints
|
93 |
+
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
|
94 |
+
def handDetect(candidate, subset, oriImg):
|
95 |
+
# right hand: wrist 4, elbow 3, shoulder 2
|
96 |
+
# left hand: wrist 7, elbow 6, shoulder 5
|
97 |
+
ratioWristElbow = 0.33
|
98 |
+
detect_result = []
|
99 |
+
image_height, image_width = oriImg.shape[0:2]
|
100 |
+
for person in subset.astype(int):
|
101 |
+
# if any of three not detected
|
102 |
+
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
|
103 |
+
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
|
104 |
+
if not (has_left or has_right):
|
105 |
+
continue
|
106 |
+
hands = []
|
107 |
+
#left hand
|
108 |
+
if has_left:
|
109 |
+
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
|
110 |
+
x1, y1 = candidate[left_shoulder_index][:2]
|
111 |
+
x2, y2 = candidate[left_elbow_index][:2]
|
112 |
+
x3, y3 = candidate[left_wrist_index][:2]
|
113 |
+
hands.append([x1, y1, x2, y2, x3, y3, True])
|
114 |
+
# right hand
|
115 |
+
if has_right:
|
116 |
+
right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
|
117 |
+
x1, y1 = candidate[right_shoulder_index][:2]
|
118 |
+
x2, y2 = candidate[right_elbow_index][:2]
|
119 |
+
x3, y3 = candidate[right_wrist_index][:2]
|
120 |
+
hands.append([x1, y1, x2, y2, x3, y3, False])
|
121 |
+
|
122 |
+
for x1, y1, x2, y2, x3, y3, is_left in hands:
|
123 |
+
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
|
124 |
+
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
|
125 |
+
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
|
126 |
+
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
|
127 |
+
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
|
128 |
+
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
|
129 |
+
x = x3 + ratioWristElbow * (x3 - x2)
|
130 |
+
y = y3 + ratioWristElbow * (y3 - y2)
|
131 |
+
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
|
132 |
+
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
133 |
+
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
|
134 |
+
# x-y refers to the center --> offset to topLeft point
|
135 |
+
# handRectangle.x -= handRectangle.width / 2.f;
|
136 |
+
# handRectangle.y -= handRectangle.height / 2.f;
|
137 |
+
x -= width / 2
|
138 |
+
y -= width / 2 # width = height
|
139 |
+
# overflow the image
|
140 |
+
if x < 0: x = 0
|
141 |
+
if y < 0: y = 0
|
142 |
+
width1 = width
|
143 |
+
width2 = width
|
144 |
+
if x + width > image_width: width1 = image_width - x
|
145 |
+
if y + width > image_height: width2 = image_height - y
|
146 |
+
width = min(width1, width2)
|
147 |
+
# the max hand box value is 20 pixels
|
148 |
+
if width >= 20:
|
149 |
+
detect_result.append([int(x), int(y), int(width), is_left])
|
150 |
+
|
151 |
+
'''
|
152 |
+
return value: [[x, y, w, True if left hand else False]].
|
153 |
+
width=height since the network require squared input.
|
154 |
+
x, y is the coordinate of top left
|
155 |
+
'''
|
156 |
+
return detect_result
|
157 |
+
|
158 |
+
# get max index of 2d array
|
159 |
+
def npmax(array):
|
160 |
+
arrayindex = array.argmax(1)
|
161 |
+
arrayvalue = array.max(1)
|
162 |
+
i = arrayvalue.argmax()
|
163 |
+
j = arrayindex[i]
|
164 |
+
return i, j
|
annotator/uniformer/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from annotator.uniformer.mmseg.apis import init_segmentor, inference_segmentor, show_result_pyplot
|
4 |
+
from annotator.uniformer.mmseg.core.evaluation import get_palette
|
5 |
+
from annotator.util import annotator_ckpts_path
|
6 |
+
|
7 |
+
|
8 |
+
checkpoint_file = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/upernet_global_small.pth"
|
9 |
+
|
10 |
+
|
11 |
+
class UniformerDetector:
|
12 |
+
def __init__(self):
|
13 |
+
modelpath = os.path.join(annotator_ckpts_path, "upernet_global_small.pth")
|
14 |
+
if not os.path.exists(modelpath):
|
15 |
+
from basicsr.utils.download_util import load_file_from_url
|
16 |
+
load_file_from_url(checkpoint_file, model_dir=annotator_ckpts_path)
|
17 |
+
config_file = os.path.join(os.path.dirname(annotator_ckpts_path), "uniformer", "exp", "upernet_global_small", "config.py")
|
18 |
+
self.model = init_segmentor(config_file, modelpath).cuda()
|
19 |
+
|
20 |
+
def __call__(self, img):
|
21 |
+
result = inference_segmentor(self.model, img)
|
22 |
+
res_img = show_result_pyplot(self.model, img, result, get_palette('ade'), opacity=1)
|
23 |
+
return res_img
|
annotator/uniformer/configs/_base_/datasets/ade20k.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ADE20KDataset'
|
3 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
4 |
+
img_norm_cfg = dict(
|
5 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
6 |
+
crop_size = (512, 512)
|
7 |
+
train_pipeline = [
|
8 |
+
dict(type='LoadImageFromFile'),
|
9 |
+
dict(type='LoadAnnotations', reduce_zero_label=True),
|
10 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
11 |
+
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
12 |
+
dict(type='RandomFlip', prob=0.5),
|
13 |
+
dict(type='PhotoMetricDistortion'),
|
14 |
+
dict(type='Normalize', **img_norm_cfg),
|
15 |
+
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
16 |
+
dict(type='DefaultFormatBundle'),
|
17 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
18 |
+
]
|
19 |
+
test_pipeline = [
|
20 |
+
dict(type='LoadImageFromFile'),
|
21 |
+
dict(
|
22 |
+
type='MultiScaleFlipAug',
|
23 |
+
img_scale=(2048, 512),
|
24 |
+
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
25 |
+
flip=False,
|
26 |
+
transforms=[
|
27 |
+
dict(type='Resize', keep_ratio=True),
|
28 |
+
dict(type='RandomFlip'),
|
29 |
+
dict(type='Normalize', **img_norm_cfg),
|
30 |
+
dict(type='ImageToTensor', keys=['img']),
|
31 |
+
dict(type='Collect', keys=['img']),
|
32 |
+
])
|
33 |
+
]
|
34 |
+
data = dict(
|
35 |
+
samples_per_gpu=4,
|
36 |
+
workers_per_gpu=4,
|
37 |
+
train=dict(
|
38 |
+
type=dataset_type,
|
39 |
+
data_root=data_root,
|
40 |
+
img_dir='images/training',
|
41 |
+
ann_dir='annotations/training',
|
42 |
+
pipeline=train_pipeline),
|
43 |
+
val=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
data_root=data_root,
|
46 |
+
img_dir='images/validation',
|
47 |
+
ann_dir='annotations/validation',
|
48 |
+
pipeline=test_pipeline),
|
49 |
+
test=dict(
|
50 |
+
type=dataset_type,
|
51 |
+
data_root=data_root,
|
52 |
+
img_dir='images/validation',
|
53 |
+
ann_dir='annotations/validation',
|
54 |
+
pipeline=test_pipeline))
|
annotator/uniformer/configs/_base_/datasets/chase_db1.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'ChaseDB1Dataset'
|
3 |
+
data_root = 'data/CHASE_DB1'
|
4 |
+
img_norm_cfg = dict(
|
5 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
6 |
+
img_scale = (960, 999)
|
7 |
+
crop_size = (128, 128)
|
8 |
+
train_pipeline = [
|
9 |
+
dict(type='LoadImageFromFile'),
|
10 |
+
dict(type='LoadAnnotations'),
|
11 |
+
dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
|
12 |
+
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
13 |
+
dict(type='RandomFlip', prob=0.5),
|
14 |
+
dict(type='PhotoMetricDistortion'),
|
15 |
+
dict(type='Normalize', **img_norm_cfg),
|
16 |
+
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
17 |
+
dict(type='DefaultFormatBundle'),
|
18 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
19 |
+
]
|
20 |
+
test_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile'),
|
22 |
+
dict(
|
23 |
+
type='MultiScaleFlipAug',
|
24 |
+
img_scale=img_scale,
|
25 |
+
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
|
26 |
+
flip=False,
|
27 |
+
transforms=[
|
28 |
+
dict(type='Resize', keep_ratio=True),
|
29 |
+
dict(type='RandomFlip'),
|
30 |
+
dict(type='Normalize', **img_norm_cfg),
|
31 |
+
dict(type='ImageToTensor', keys=['img']),
|
32 |
+
dict(type='Collect', keys=['img'])
|
33 |
+
])
|
34 |
+
]
|
35 |
+
|
36 |
+
data = dict(
|
37 |
+
samples_per_gpu=4,
|
38 |
+
workers_per_gpu=4,
|
39 |
+
train=dict(
|
40 |
+
type='RepeatDataset',
|
41 |
+
times=40000,
|
42 |
+
dataset=dict(
|
43 |
+
type=dataset_type,
|
44 |
+
data_root=data_root,
|
45 |
+
img_dir='images/training',
|
46 |
+
ann_dir='annotations/training',
|
47 |
+
pipeline=train_pipeline)),
|
48 |
+
val=dict(
|
49 |
+
type=dataset_type,
|
50 |
+
data_root=data_root,
|
51 |
+
img_dir='images/validation',
|
52 |
+
ann_dir='annotations/validation',
|
53 |
+
pipeline=test_pipeline),
|
54 |
+
test=dict(
|
55 |
+
type=dataset_type,
|
56 |
+
data_root=data_root,
|
57 |
+
img_dir='images/validation',
|
58 |
+
ann_dir='annotations/validation',
|
59 |
+
pipeline=test_pipeline))
|
annotator/uniformer/configs/_base_/datasets/cityscapes.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'CityscapesDataset'
|
3 |
+
data_root = 'data/cityscapes/'
|
4 |
+
img_norm_cfg = dict(
|
5 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
6 |
+
crop_size = (512, 1024)
|
7 |
+
train_pipeline = [
|
8 |
+
dict(type='LoadImageFromFile'),
|
9 |
+
dict(type='LoadAnnotations'),
|
10 |
+
dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
|
11 |
+
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
12 |
+
dict(type='RandomFlip', prob=0.5),
|
13 |
+
dict(type='PhotoMetricDistortion'),
|
14 |
+
dict(type='Normalize', **img_norm_cfg),
|
15 |
+
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
16 |
+
dict(type='DefaultFormatBundle'),
|
17 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
18 |
+
]
|
19 |
+
test_pipeline = [
|
20 |
+
dict(type='LoadImageFromFile'),
|
21 |
+
dict(
|
22 |
+
type='MultiScaleFlipAug',
|
23 |
+
img_scale=(2048, 1024),
|
24 |
+
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
25 |
+
flip=False,
|
26 |
+
transforms=[
|
27 |
+
dict(type='Resize', keep_ratio=True),
|
28 |
+
dict(type='RandomFlip'),
|
29 |
+
dict(type='Normalize', **img_norm_cfg),
|
30 |
+
dict(type='ImageToTensor', keys=['img']),
|
31 |
+
dict(type='Collect', keys=['img']),
|
32 |
+
])
|
33 |
+
]
|
34 |
+
data = dict(
|
35 |
+
samples_per_gpu=2,
|
36 |
+
workers_per_gpu=2,
|
37 |
+
train=dict(
|
38 |
+
type=dataset_type,
|
39 |
+
data_root=data_root,
|
40 |
+
img_dir='leftImg8bit/train',
|
41 |
+
ann_dir='gtFine/train',
|
42 |
+
pipeline=train_pipeline),
|
43 |
+
val=dict(
|
44 |
+
type=dataset_type,
|
45 |
+
data_root=data_root,
|
46 |
+
img_dir='leftImg8bit/val',
|
47 |
+
ann_dir='gtFine/val',
|
48 |
+
pipeline=test_pipeline),
|
49 |
+
test=dict(
|
50 |
+
type=dataset_type,
|
51 |
+
data_root=data_root,
|
52 |
+
img_dir='leftImg8bit/val',
|
53 |
+
ann_dir='gtFine/val',
|
54 |
+
pipeline=test_pipeline))
|
annotator/uniformer/configs/_base_/datasets/cityscapes_769x769.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './cityscapes.py'
|
2 |
+
img_norm_cfg = dict(
|
3 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
4 |
+
crop_size = (769, 769)
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile'),
|
7 |
+
dict(type='LoadAnnotations'),
|
8 |
+
dict(type='Resize', img_scale=(2049, 1025), ratio_range=(0.5, 2.0)),
|
9 |
+
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
10 |
+
dict(type='RandomFlip', prob=0.5),
|
11 |
+
dict(type='PhotoMetricDistortion'),
|
12 |
+
dict(type='Normalize', **img_norm_cfg),
|
13 |
+
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
14 |
+
dict(type='DefaultFormatBundle'),
|
15 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
16 |
+
]
|
17 |
+
test_pipeline = [
|
18 |
+
dict(type='LoadImageFromFile'),
|
19 |
+
dict(
|
20 |
+
type='MultiScaleFlipAug',
|
21 |
+
img_scale=(2049, 1025),
|
22 |
+
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
23 |
+
flip=False,
|
24 |
+
transforms=[
|
25 |
+
dict(type='Resize', keep_ratio=True),
|
26 |
+
dict(type='RandomFlip'),
|
27 |
+
dict(type='Normalize', **img_norm_cfg),
|
28 |
+
dict(type='ImageToTensor', keys=['img']),
|
29 |
+
dict(type='Collect', keys=['img']),
|
30 |
+
])
|
31 |
+
]
|
32 |
+
data = dict(
|
33 |
+
train=dict(pipeline=train_pipeline),
|
34 |
+
val=dict(pipeline=test_pipeline),
|
35 |
+
test=dict(pipeline=test_pipeline))
|
annotator/uniformer/configs/_base_/datasets/drive.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'DRIVEDataset'
|
3 |
+
data_root = 'data/DRIVE'
|
4 |
+
img_norm_cfg = dict(
|
5 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
6 |
+
img_scale = (584, 565)
|
7 |
+
crop_size = (64, 64)
|
8 |
+
train_pipeline = [
|
9 |
+
dict(type='LoadImageFromFile'),
|
10 |
+
dict(type='LoadAnnotations'),
|
11 |
+
dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
|
12 |
+
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
13 |
+
dict(type='RandomFlip', prob=0.5),
|
14 |
+
dict(type='PhotoMetricDistortion'),
|
15 |
+
dict(type='Normalize', **img_norm_cfg),
|
16 |
+
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
17 |
+
dict(type='DefaultFormatBundle'),
|
18 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
19 |
+
]
|
20 |
+
test_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile'),
|
22 |
+
dict(
|
23 |
+
type='MultiScaleFlipAug',
|
24 |
+
img_scale=img_scale,
|
25 |
+
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
|
26 |
+
flip=False,
|
27 |
+
transforms=[
|
28 |
+
dict(type='Resize', keep_ratio=True),
|
29 |
+
dict(type='RandomFlip'),
|
30 |
+
dict(type='Normalize', **img_norm_cfg),
|
31 |
+
dict(type='ImageToTensor', keys=['img']),
|
32 |
+
dict(type='Collect', keys=['img'])
|
33 |
+
])
|
34 |
+
]
|
35 |
+
|
36 |
+
data = dict(
|
37 |
+
samples_per_gpu=4,
|
38 |
+
workers_per_gpu=4,
|
39 |
+
train=dict(
|
40 |
+
type='RepeatDataset',
|
41 |
+
times=40000,
|
42 |
+
dataset=dict(
|
43 |
+
type=dataset_type,
|
44 |
+
data_root=data_root,
|
45 |
+
img_dir='images/training',
|
46 |
+
ann_dir='annotations/training',
|
47 |
+
pipeline=train_pipeline)),
|
48 |
+
val=dict(
|
49 |
+
type=dataset_type,
|
50 |
+
data_root=data_root,
|
51 |
+
img_dir='images/validation',
|
52 |
+
ann_dir='annotations/validation',
|
53 |
+
pipeline=test_pipeline),
|
54 |
+
test=dict(
|
55 |
+
type=dataset_type,
|
56 |
+
data_root=data_root,
|
57 |
+
img_dir='images/validation',
|
58 |
+
ann_dir='annotations/validation',
|
59 |
+
pipeline=test_pipeline))
|
annotator/uniformer/configs/_base_/datasets/hrf.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'HRFDataset'
|
3 |
+
data_root = 'data/HRF'
|
4 |
+
img_norm_cfg = dict(
|
5 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
6 |
+
img_scale = (2336, 3504)
|
7 |
+
crop_size = (256, 256)
|
8 |
+
train_pipeline = [
|
9 |
+
dict(type='LoadImageFromFile'),
|
10 |
+
dict(type='LoadAnnotations'),
|
11 |
+
dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
|
12 |
+
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
13 |
+
dict(type='RandomFlip', prob=0.5),
|
14 |
+
dict(type='PhotoMetricDistortion'),
|
15 |
+
dict(type='Normalize', **img_norm_cfg),
|
16 |
+
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
17 |
+
dict(type='DefaultFormatBundle'),
|
18 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
19 |
+
]
|
20 |
+
test_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile'),
|
22 |
+
dict(
|
23 |
+
type='MultiScaleFlipAug',
|
24 |
+
img_scale=img_scale,
|
25 |
+
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
|
26 |
+
flip=False,
|
27 |
+
transforms=[
|
28 |
+
dict(type='Resize', keep_ratio=True),
|
29 |
+
dict(type='RandomFlip'),
|
30 |
+
dict(type='Normalize', **img_norm_cfg),
|
31 |
+
dict(type='ImageToTensor', keys=['img']),
|
32 |
+
dict(type='Collect', keys=['img'])
|
33 |
+
])
|
34 |
+
]
|
35 |
+
|
36 |
+
data = dict(
|
37 |
+
samples_per_gpu=4,
|
38 |
+
workers_per_gpu=4,
|
39 |
+
train=dict(
|
40 |
+
type='RepeatDataset',
|
41 |
+
times=40000,
|
42 |
+
dataset=dict(
|
43 |
+
type=dataset_type,
|
44 |
+
data_root=data_root,
|
45 |
+
img_dir='images/training',
|
46 |
+
ann_dir='annotations/training',
|
47 |
+
pipeline=train_pipeline)),
|
48 |
+
val=dict(
|
49 |
+
type=dataset_type,
|
50 |
+
data_root=data_root,
|
51 |
+
img_dir='images/validation',
|
52 |
+
ann_dir='annotations/validation',
|
53 |
+
pipeline=test_pipeline),
|
54 |
+
test=dict(
|
55 |
+
type=dataset_type,
|
56 |
+
data_root=data_root,
|
57 |
+
img_dir='images/validation',
|
58 |
+
ann_dir='annotations/validation',
|
59 |
+
pipeline=test_pipeline))
|
annotator/uniformer/configs/_base_/datasets/pascal_context.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'PascalContextDataset'
|
3 |
+
data_root = 'data/VOCdevkit/VOC2010/'
|
4 |
+
img_norm_cfg = dict(
|
5 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
6 |
+
|
7 |
+
img_scale = (520, 520)
|
8 |
+
crop_size = (480, 480)
|
9 |
+
|
10 |
+
train_pipeline = [
|
11 |
+
dict(type='LoadImageFromFile'),
|
12 |
+
dict(type='LoadAnnotations'),
|
13 |
+
dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
|
14 |
+
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
15 |
+
dict(type='RandomFlip', prob=0.5),
|
16 |
+
dict(type='PhotoMetricDistortion'),
|
17 |
+
dict(type='Normalize', **img_norm_cfg),
|
18 |
+
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
19 |
+
dict(type='DefaultFormatBundle'),
|
20 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
21 |
+
]
|
22 |
+
test_pipeline = [
|
23 |
+
dict(type='LoadImageFromFile'),
|
24 |
+
dict(
|
25 |
+
type='MultiScaleFlipAug',
|
26 |
+
img_scale=img_scale,
|
27 |
+
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
28 |
+
flip=False,
|
29 |
+
transforms=[
|
30 |
+
dict(type='Resize', keep_ratio=True),
|
31 |
+
dict(type='RandomFlip'),
|
32 |
+
dict(type='Normalize', **img_norm_cfg),
|
33 |
+
dict(type='ImageToTensor', keys=['img']),
|
34 |
+
dict(type='Collect', keys=['img']),
|
35 |
+
])
|
36 |
+
]
|
37 |
+
data = dict(
|
38 |
+
samples_per_gpu=4,
|
39 |
+
workers_per_gpu=4,
|
40 |
+
train=dict(
|
41 |
+
type=dataset_type,
|
42 |
+
data_root=data_root,
|
43 |
+
img_dir='JPEGImages',
|
44 |
+
ann_dir='SegmentationClassContext',
|
45 |
+
split='ImageSets/SegmentationContext/train.txt',
|
46 |
+
pipeline=train_pipeline),
|
47 |
+
val=dict(
|
48 |
+
type=dataset_type,
|
49 |
+
data_root=data_root,
|
50 |
+
img_dir='JPEGImages',
|
51 |
+
ann_dir='SegmentationClassContext',
|
52 |
+
split='ImageSets/SegmentationContext/val.txt',
|
53 |
+
pipeline=test_pipeline),
|
54 |
+
test=dict(
|
55 |
+
type=dataset_type,
|
56 |
+
data_root=data_root,
|
57 |
+
img_dir='JPEGImages',
|
58 |
+
ann_dir='SegmentationClassContext',
|
59 |
+
split='ImageSets/SegmentationContext/val.txt',
|
60 |
+
pipeline=test_pipeline))
|
annotator/uniformer/configs/_base_/datasets/pascal_context_59.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'PascalContextDataset59'
|
3 |
+
data_root = 'data/VOCdevkit/VOC2010/'
|
4 |
+
img_norm_cfg = dict(
|
5 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
6 |
+
|
7 |
+
img_scale = (520, 520)
|
8 |
+
crop_size = (480, 480)
|
9 |
+
|
10 |
+
train_pipeline = [
|
11 |
+
dict(type='LoadImageFromFile'),
|
12 |
+
dict(type='LoadAnnotations', reduce_zero_label=True),
|
13 |
+
dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
|
14 |
+
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
15 |
+
dict(type='RandomFlip', prob=0.5),
|
16 |
+
dict(type='PhotoMetricDistortion'),
|
17 |
+
dict(type='Normalize', **img_norm_cfg),
|
18 |
+
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
19 |
+
dict(type='DefaultFormatBundle'),
|
20 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
21 |
+
]
|
22 |
+
test_pipeline = [
|
23 |
+
dict(type='LoadImageFromFile'),
|
24 |
+
dict(
|
25 |
+
type='MultiScaleFlipAug',
|
26 |
+
img_scale=img_scale,
|
27 |
+
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
28 |
+
flip=False,
|
29 |
+
transforms=[
|
30 |
+
dict(type='Resize', keep_ratio=True),
|
31 |
+
dict(type='RandomFlip'),
|
32 |
+
dict(type='Normalize', **img_norm_cfg),
|
33 |
+
dict(type='ImageToTensor', keys=['img']),
|
34 |
+
dict(type='Collect', keys=['img']),
|
35 |
+
])
|
36 |
+
]
|
37 |
+
data = dict(
|
38 |
+
samples_per_gpu=4,
|
39 |
+
workers_per_gpu=4,
|
40 |
+
train=dict(
|
41 |
+
type=dataset_type,
|
42 |
+
data_root=data_root,
|
43 |
+
img_dir='JPEGImages',
|
44 |
+
ann_dir='SegmentationClassContext',
|
45 |
+
split='ImageSets/SegmentationContext/train.txt',
|
46 |
+
pipeline=train_pipeline),
|
47 |
+
val=dict(
|
48 |
+
type=dataset_type,
|
49 |
+
data_root=data_root,
|
50 |
+
img_dir='JPEGImages',
|
51 |
+
ann_dir='SegmentationClassContext',
|
52 |
+
split='ImageSets/SegmentationContext/val.txt',
|
53 |
+
pipeline=test_pipeline),
|
54 |
+
test=dict(
|
55 |
+
type=dataset_type,
|
56 |
+
data_root=data_root,
|
57 |
+
img_dir='JPEGImages',
|
58 |
+
ann_dir='SegmentationClassContext',
|
59 |
+
split='ImageSets/SegmentationContext/val.txt',
|
60 |
+
pipeline=test_pipeline))
|
annotator/uniformer/configs/_base_/datasets/pascal_voc12.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'PascalVOCDataset'
|
3 |
+
data_root = 'data/VOCdevkit/VOC2012'
|
4 |
+
img_norm_cfg = dict(
|
5 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
6 |
+
crop_size = (512, 512)
|
7 |
+
train_pipeline = [
|
8 |
+
dict(type='LoadImageFromFile'),
|
9 |
+
dict(type='LoadAnnotations'),
|
10 |
+
dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
|
11 |
+
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
12 |
+
dict(type='RandomFlip', prob=0.5),
|
13 |
+
dict(type='PhotoMetricDistortion'),
|
14 |
+
dict(type='Normalize', **img_norm_cfg),
|
15 |
+
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
16 |
+
dict(type='DefaultFormatBundle'),
|
17 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg']),
|
18 |
+
]
|
19 |
+
test_pipeline = [
|
20 |
+
dict(type='LoadImageFromFile'),
|
21 |
+
dict(
|
22 |
+
type='MultiScaleFlipAug',
|
23 |
+
img_scale=(2048, 512),
|
24 |
+
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
|
25 |
+
flip=False,
|
26 |
+
transforms=[
|
27 |
+
dict(type='Resize', keep_ratio=True),
|
28 |
+
dict(type='RandomFlip'),
|
29 |
+
dict(type='Normalize', **img_norm_cfg),
|
30 |
+
dict(type='ImageToTensor', keys=['img']),
|
31 |
+
dict(type='Collect', keys=['img']),
|
32 |
+
])
|
33 |
+
]
|
34 |
+
data = dict(
|
35 |
+
samples_per_gpu=4,
|
36 |
+
workers_per_gpu=4,
|
37 |
+
train=dict(
|
38 |
+
type=dataset_type,
|
39 |
+
data_root=data_root,
|
40 |
+
img_dir='JPEGImages',
|
41 |
+
ann_dir='SegmentationClass',
|
42 |
+
split='ImageSets/Segmentation/train.txt',
|
43 |
+
pipeline=train_pipeline),
|
44 |
+
val=dict(
|
45 |
+
type=dataset_type,
|
46 |
+
data_root=data_root,
|
47 |
+
img_dir='JPEGImages',
|
48 |
+
ann_dir='SegmentationClass',
|
49 |
+
split='ImageSets/Segmentation/val.txt',
|
50 |
+
pipeline=test_pipeline),
|
51 |
+
test=dict(
|
52 |
+
type=dataset_type,
|
53 |
+
data_root=data_root,
|
54 |
+
img_dir='JPEGImages',
|
55 |
+
ann_dir='SegmentationClass',
|
56 |
+
split='ImageSets/Segmentation/val.txt',
|
57 |
+
pipeline=test_pipeline))
|
annotator/uniformer/configs/_base_/datasets/pascal_voc12_aug.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_base_ = './pascal_voc12.py'
|
2 |
+
# dataset settings
|
3 |
+
data = dict(
|
4 |
+
train=dict(
|
5 |
+
ann_dir=['SegmentationClass', 'SegmentationClassAug'],
|
6 |
+
split=[
|
7 |
+
'ImageSets/Segmentation/train.txt',
|
8 |
+
'ImageSets/Segmentation/aug.txt'
|
9 |
+
]))
|
annotator/uniformer/configs/_base_/datasets/stare.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dataset settings
|
2 |
+
dataset_type = 'STAREDataset'
|
3 |
+
data_root = 'data/STARE'
|
4 |
+
img_norm_cfg = dict(
|
5 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
6 |
+
img_scale = (605, 700)
|
7 |
+
crop_size = (128, 128)
|
8 |
+
train_pipeline = [
|
9 |
+
dict(type='LoadImageFromFile'),
|
10 |
+
dict(type='LoadAnnotations'),
|
11 |
+
dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
|
12 |
+
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
|
13 |
+
dict(type='RandomFlip', prob=0.5),
|
14 |
+
dict(type='PhotoMetricDistortion'),
|
15 |
+
dict(type='Normalize', **img_norm_cfg),
|
16 |
+
dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
|
17 |
+
dict(type='DefaultFormatBundle'),
|
18 |
+
dict(type='Collect', keys=['img', 'gt_semantic_seg'])
|
19 |
+
]
|
20 |
+
test_pipeline = [
|
21 |
+
dict(type='LoadImageFromFile'),
|
22 |
+
dict(
|
23 |
+
type='MultiScaleFlipAug',
|
24 |
+
img_scale=img_scale,
|
25 |
+
# img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
|
26 |
+
flip=False,
|
27 |
+
transforms=[
|
28 |
+
dict(type='Resize', keep_ratio=True),
|
29 |
+
dict(type='RandomFlip'),
|
30 |
+
dict(type='Normalize', **img_norm_cfg),
|
31 |
+
dict(type='ImageToTensor', keys=['img']),
|
32 |
+
dict(type='Collect', keys=['img'])
|
33 |
+
])
|
34 |
+
]
|
35 |
+
|
36 |
+
data = dict(
|
37 |
+
samples_per_gpu=4,
|
38 |
+
workers_per_gpu=4,
|
39 |
+
train=dict(
|
40 |
+
type='RepeatDataset',
|
41 |
+
times=40000,
|
42 |
+
dataset=dict(
|
43 |
+
type=dataset_type,
|
44 |
+
data_root=data_root,
|
45 |
+
img_dir='images/training',
|
46 |
+
ann_dir='annotations/training',
|
47 |
+
pipeline=train_pipeline)),
|
48 |
+
val=dict(
|
49 |
+
type=dataset_type,
|
50 |
+
data_root=data_root,
|
51 |
+
img_dir='images/validation',
|
52 |
+
ann_dir='annotations/validation',
|
53 |
+
pipeline=test_pipeline),
|
54 |
+
test=dict(
|
55 |
+
type=dataset_type,
|
56 |
+
data_root=data_root,
|
57 |
+
img_dir='images/validation',
|
58 |
+
ann_dir='annotations/validation',
|
59 |
+
pipeline=test_pipeline))
|
annotator/uniformer/configs/_base_/default_runtime.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# yapf:disable
|
2 |
+
log_config = dict(
|
3 |
+
interval=50,
|
4 |
+
hooks=[
|
5 |
+
dict(type='TextLoggerHook', by_epoch=False),
|
6 |
+
# dict(type='TensorboardLoggerHook')
|
7 |
+
])
|
8 |
+
# yapf:enable
|
9 |
+
dist_params = dict(backend='nccl')
|
10 |
+
log_level = 'INFO'
|
11 |
+
load_from = None
|
12 |
+
resume_from = None
|
13 |
+
workflow = [('train', 1)]
|
14 |
+
cudnn_benchmark = True
|
annotator/uniformer/configs/_base_/models/ann_r50-d8.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='ANNHead',
|
19 |
+
in_channels=[1024, 2048],
|
20 |
+
in_index=[2, 3],
|
21 |
+
channels=512,
|
22 |
+
project_channels=256,
|
23 |
+
query_scales=(1, ),
|
24 |
+
key_pool_scales=(1, 3, 6, 8),
|
25 |
+
dropout_ratio=0.1,
|
26 |
+
num_classes=19,
|
27 |
+
norm_cfg=norm_cfg,
|
28 |
+
align_corners=False,
|
29 |
+
loss_decode=dict(
|
30 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
31 |
+
auxiliary_head=dict(
|
32 |
+
type='FCNHead',
|
33 |
+
in_channels=1024,
|
34 |
+
in_index=2,
|
35 |
+
channels=256,
|
36 |
+
num_convs=1,
|
37 |
+
concat_input=False,
|
38 |
+
dropout_ratio=0.1,
|
39 |
+
num_classes=19,
|
40 |
+
norm_cfg=norm_cfg,
|
41 |
+
align_corners=False,
|
42 |
+
loss_decode=dict(
|
43 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
44 |
+
# model training and testing settings
|
45 |
+
train_cfg=dict(),
|
46 |
+
test_cfg=dict(mode='whole'))
|
annotator/uniformer/configs/_base_/models/apcnet_r50-d8.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='APCHead',
|
19 |
+
in_channels=2048,
|
20 |
+
in_index=3,
|
21 |
+
channels=512,
|
22 |
+
pool_scales=(1, 2, 3, 6),
|
23 |
+
dropout_ratio=0.1,
|
24 |
+
num_classes=19,
|
25 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
26 |
+
align_corners=False,
|
27 |
+
loss_decode=dict(
|
28 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
29 |
+
auxiliary_head=dict(
|
30 |
+
type='FCNHead',
|
31 |
+
in_channels=1024,
|
32 |
+
in_index=2,
|
33 |
+
channels=256,
|
34 |
+
num_convs=1,
|
35 |
+
concat_input=False,
|
36 |
+
dropout_ratio=0.1,
|
37 |
+
num_classes=19,
|
38 |
+
norm_cfg=norm_cfg,
|
39 |
+
align_corners=False,
|
40 |
+
loss_decode=dict(
|
41 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
42 |
+
# model training and testing settings
|
43 |
+
train_cfg=dict(),
|
44 |
+
test_cfg=dict(mode='whole'))
|
annotator/uniformer/configs/_base_/models/ccnet_r50-d8.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='CCHead',
|
19 |
+
in_channels=2048,
|
20 |
+
in_index=3,
|
21 |
+
channels=512,
|
22 |
+
recurrence=2,
|
23 |
+
dropout_ratio=0.1,
|
24 |
+
num_classes=19,
|
25 |
+
norm_cfg=norm_cfg,
|
26 |
+
align_corners=False,
|
27 |
+
loss_decode=dict(
|
28 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
29 |
+
auxiliary_head=dict(
|
30 |
+
type='FCNHead',
|
31 |
+
in_channels=1024,
|
32 |
+
in_index=2,
|
33 |
+
channels=256,
|
34 |
+
num_convs=1,
|
35 |
+
concat_input=False,
|
36 |
+
dropout_ratio=0.1,
|
37 |
+
num_classes=19,
|
38 |
+
norm_cfg=norm_cfg,
|
39 |
+
align_corners=False,
|
40 |
+
loss_decode=dict(
|
41 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
42 |
+
# model training and testing settings
|
43 |
+
train_cfg=dict(),
|
44 |
+
test_cfg=dict(mode='whole'))
|
annotator/uniformer/configs/_base_/models/cgnet.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', eps=1e-03, requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
backbone=dict(
|
6 |
+
type='CGNet',
|
7 |
+
norm_cfg=norm_cfg,
|
8 |
+
in_channels=3,
|
9 |
+
num_channels=(32, 64, 128),
|
10 |
+
num_blocks=(3, 21),
|
11 |
+
dilations=(2, 4),
|
12 |
+
reductions=(8, 16)),
|
13 |
+
decode_head=dict(
|
14 |
+
type='FCNHead',
|
15 |
+
in_channels=256,
|
16 |
+
in_index=2,
|
17 |
+
channels=256,
|
18 |
+
num_convs=0,
|
19 |
+
concat_input=False,
|
20 |
+
dropout_ratio=0,
|
21 |
+
num_classes=19,
|
22 |
+
norm_cfg=norm_cfg,
|
23 |
+
loss_decode=dict(
|
24 |
+
type='CrossEntropyLoss',
|
25 |
+
use_sigmoid=False,
|
26 |
+
loss_weight=1.0,
|
27 |
+
class_weight=[
|
28 |
+
2.5959933, 6.7415504, 3.5354059, 9.8663225, 9.690899, 9.369352,
|
29 |
+
10.289121, 9.953208, 4.3097677, 9.490387, 7.674431, 9.396905,
|
30 |
+
10.347791, 6.3927646, 10.226669, 10.241062, 10.280587,
|
31 |
+
10.396974, 10.055647
|
32 |
+
])),
|
33 |
+
# model training and testing settings
|
34 |
+
train_cfg=dict(sampler=None),
|
35 |
+
test_cfg=dict(mode='whole'))
|
annotator/uniformer/configs/_base_/models/danet_r50-d8.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='DAHead',
|
19 |
+
in_channels=2048,
|
20 |
+
in_index=3,
|
21 |
+
channels=512,
|
22 |
+
pam_channels=64,
|
23 |
+
dropout_ratio=0.1,
|
24 |
+
num_classes=19,
|
25 |
+
norm_cfg=norm_cfg,
|
26 |
+
align_corners=False,
|
27 |
+
loss_decode=dict(
|
28 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
29 |
+
auxiliary_head=dict(
|
30 |
+
type='FCNHead',
|
31 |
+
in_channels=1024,
|
32 |
+
in_index=2,
|
33 |
+
channels=256,
|
34 |
+
num_convs=1,
|
35 |
+
concat_input=False,
|
36 |
+
dropout_ratio=0.1,
|
37 |
+
num_classes=19,
|
38 |
+
norm_cfg=norm_cfg,
|
39 |
+
align_corners=False,
|
40 |
+
loss_decode=dict(
|
41 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
42 |
+
# model training and testing settings
|
43 |
+
train_cfg=dict(),
|
44 |
+
test_cfg=dict(mode='whole'))
|
annotator/uniformer/configs/_base_/models/deeplabv3_r50-d8.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='ASPPHead',
|
19 |
+
in_channels=2048,
|
20 |
+
in_index=3,
|
21 |
+
channels=512,
|
22 |
+
dilations=(1, 12, 24, 36),
|
23 |
+
dropout_ratio=0.1,
|
24 |
+
num_classes=19,
|
25 |
+
norm_cfg=norm_cfg,
|
26 |
+
align_corners=False,
|
27 |
+
loss_decode=dict(
|
28 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
29 |
+
auxiliary_head=dict(
|
30 |
+
type='FCNHead',
|
31 |
+
in_channels=1024,
|
32 |
+
in_index=2,
|
33 |
+
channels=256,
|
34 |
+
num_convs=1,
|
35 |
+
concat_input=False,
|
36 |
+
dropout_ratio=0.1,
|
37 |
+
num_classes=19,
|
38 |
+
norm_cfg=norm_cfg,
|
39 |
+
align_corners=False,
|
40 |
+
loss_decode=dict(
|
41 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
42 |
+
# model training and testing settings
|
43 |
+
train_cfg=dict(),
|
44 |
+
test_cfg=dict(mode='whole'))
|
annotator/uniformer/configs/_base_/models/deeplabv3_unet_s5-d16.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained=None,
|
6 |
+
backbone=dict(
|
7 |
+
type='UNet',
|
8 |
+
in_channels=3,
|
9 |
+
base_channels=64,
|
10 |
+
num_stages=5,
|
11 |
+
strides=(1, 1, 1, 1, 1),
|
12 |
+
enc_num_convs=(2, 2, 2, 2, 2),
|
13 |
+
dec_num_convs=(2, 2, 2, 2),
|
14 |
+
downsamples=(True, True, True, True),
|
15 |
+
enc_dilations=(1, 1, 1, 1, 1),
|
16 |
+
dec_dilations=(1, 1, 1, 1),
|
17 |
+
with_cp=False,
|
18 |
+
conv_cfg=None,
|
19 |
+
norm_cfg=norm_cfg,
|
20 |
+
act_cfg=dict(type='ReLU'),
|
21 |
+
upsample_cfg=dict(type='InterpConv'),
|
22 |
+
norm_eval=False),
|
23 |
+
decode_head=dict(
|
24 |
+
type='ASPPHead',
|
25 |
+
in_channels=64,
|
26 |
+
in_index=4,
|
27 |
+
channels=16,
|
28 |
+
dilations=(1, 12, 24, 36),
|
29 |
+
dropout_ratio=0.1,
|
30 |
+
num_classes=2,
|
31 |
+
norm_cfg=norm_cfg,
|
32 |
+
align_corners=False,
|
33 |
+
loss_decode=dict(
|
34 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
35 |
+
auxiliary_head=dict(
|
36 |
+
type='FCNHead',
|
37 |
+
in_channels=128,
|
38 |
+
in_index=3,
|
39 |
+
channels=64,
|
40 |
+
num_convs=1,
|
41 |
+
concat_input=False,
|
42 |
+
dropout_ratio=0.1,
|
43 |
+
num_classes=2,
|
44 |
+
norm_cfg=norm_cfg,
|
45 |
+
align_corners=False,
|
46 |
+
loss_decode=dict(
|
47 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
48 |
+
# model training and testing settings
|
49 |
+
train_cfg=dict(),
|
50 |
+
test_cfg=dict(mode='slide', crop_size=256, stride=170))
|
annotator/uniformer/configs/_base_/models/deeplabv3plus_r50-d8.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='DepthwiseSeparableASPPHead',
|
19 |
+
in_channels=2048,
|
20 |
+
in_index=3,
|
21 |
+
channels=512,
|
22 |
+
dilations=(1, 12, 24, 36),
|
23 |
+
c1_in_channels=256,
|
24 |
+
c1_channels=48,
|
25 |
+
dropout_ratio=0.1,
|
26 |
+
num_classes=19,
|
27 |
+
norm_cfg=norm_cfg,
|
28 |
+
align_corners=False,
|
29 |
+
loss_decode=dict(
|
30 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
31 |
+
auxiliary_head=dict(
|
32 |
+
type='FCNHead',
|
33 |
+
in_channels=1024,
|
34 |
+
in_index=2,
|
35 |
+
channels=256,
|
36 |
+
num_convs=1,
|
37 |
+
concat_input=False,
|
38 |
+
dropout_ratio=0.1,
|
39 |
+
num_classes=19,
|
40 |
+
norm_cfg=norm_cfg,
|
41 |
+
align_corners=False,
|
42 |
+
loss_decode=dict(
|
43 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
44 |
+
# model training and testing settings
|
45 |
+
train_cfg=dict(),
|
46 |
+
test_cfg=dict(mode='whole'))
|
annotator/uniformer/configs/_base_/models/dmnet_r50-d8.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='DMHead',
|
19 |
+
in_channels=2048,
|
20 |
+
in_index=3,
|
21 |
+
channels=512,
|
22 |
+
filter_sizes=(1, 3, 5, 7),
|
23 |
+
dropout_ratio=0.1,
|
24 |
+
num_classes=19,
|
25 |
+
norm_cfg=dict(type='SyncBN', requires_grad=True),
|
26 |
+
align_corners=False,
|
27 |
+
loss_decode=dict(
|
28 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
29 |
+
auxiliary_head=dict(
|
30 |
+
type='FCNHead',
|
31 |
+
in_channels=1024,
|
32 |
+
in_index=2,
|
33 |
+
channels=256,
|
34 |
+
num_convs=1,
|
35 |
+
concat_input=False,
|
36 |
+
dropout_ratio=0.1,
|
37 |
+
num_classes=19,
|
38 |
+
norm_cfg=norm_cfg,
|
39 |
+
align_corners=False,
|
40 |
+
loss_decode=dict(
|
41 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
42 |
+
# model training and testing settings
|
43 |
+
train_cfg=dict(),
|
44 |
+
test_cfg=dict(mode='whole'))
|
annotator/uniformer/configs/_base_/models/dnl_r50-d8.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='DNLHead',
|
19 |
+
in_channels=2048,
|
20 |
+
in_index=3,
|
21 |
+
channels=512,
|
22 |
+
dropout_ratio=0.1,
|
23 |
+
reduction=2,
|
24 |
+
use_scale=True,
|
25 |
+
mode='embedded_gaussian',
|
26 |
+
num_classes=19,
|
27 |
+
norm_cfg=norm_cfg,
|
28 |
+
align_corners=False,
|
29 |
+
loss_decode=dict(
|
30 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
31 |
+
auxiliary_head=dict(
|
32 |
+
type='FCNHead',
|
33 |
+
in_channels=1024,
|
34 |
+
in_index=2,
|
35 |
+
channels=256,
|
36 |
+
num_convs=1,
|
37 |
+
concat_input=False,
|
38 |
+
dropout_ratio=0.1,
|
39 |
+
num_classes=19,
|
40 |
+
norm_cfg=norm_cfg,
|
41 |
+
align_corners=False,
|
42 |
+
loss_decode=dict(
|
43 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
44 |
+
# model training and testing settings
|
45 |
+
train_cfg=dict(),
|
46 |
+
test_cfg=dict(mode='whole'))
|
annotator/uniformer/configs/_base_/models/emanet_r50-d8.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='EMAHead',
|
19 |
+
in_channels=2048,
|
20 |
+
in_index=3,
|
21 |
+
channels=256,
|
22 |
+
ema_channels=512,
|
23 |
+
num_bases=64,
|
24 |
+
num_stages=3,
|
25 |
+
momentum=0.1,
|
26 |
+
dropout_ratio=0.1,
|
27 |
+
num_classes=19,
|
28 |
+
norm_cfg=norm_cfg,
|
29 |
+
align_corners=False,
|
30 |
+
loss_decode=dict(
|
31 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
|
32 |
+
auxiliary_head=dict(
|
33 |
+
type='FCNHead',
|
34 |
+
in_channels=1024,
|
35 |
+
in_index=2,
|
36 |
+
channels=256,
|
37 |
+
num_convs=1,
|
38 |
+
concat_input=False,
|
39 |
+
dropout_ratio=0.1,
|
40 |
+
num_classes=19,
|
41 |
+
norm_cfg=norm_cfg,
|
42 |
+
align_corners=False,
|
43 |
+
loss_decode=dict(
|
44 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
45 |
+
# model training and testing settings
|
46 |
+
train_cfg=dict(),
|
47 |
+
test_cfg=dict(mode='whole'))
|
annotator/uniformer/configs/_base_/models/encnet_r50-d8.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
norm_cfg = dict(type='SyncBN', requires_grad=True)
|
3 |
+
model = dict(
|
4 |
+
type='EncoderDecoder',
|
5 |
+
pretrained='open-mmlab://resnet50_v1c',
|
6 |
+
backbone=dict(
|
7 |
+
type='ResNetV1c',
|
8 |
+
depth=50,
|
9 |
+
num_stages=4,
|
10 |
+
out_indices=(0, 1, 2, 3),
|
11 |
+
dilations=(1, 1, 2, 4),
|
12 |
+
strides=(1, 2, 1, 1),
|
13 |
+
norm_cfg=norm_cfg,
|
14 |
+
norm_eval=False,
|
15 |
+
style='pytorch',
|
16 |
+
contract_dilation=True),
|
17 |
+
decode_head=dict(
|
18 |
+
type='EncHead',
|
19 |
+
in_channels=[512, 1024, 2048],
|
20 |
+
in_index=(1, 2, 3),
|
21 |
+
channels=512,
|
22 |
+
num_codes=32,
|
23 |
+
use_se_loss=True,
|
24 |
+
add_lateral=False,
|
25 |
+
dropout_ratio=0.1,
|
26 |
+
num_classes=19,
|
27 |
+
norm_cfg=norm_cfg,
|
28 |
+
align_corners=False,
|
29 |
+
loss_decode=dict(
|
30 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
31 |
+
loss_se_decode=dict(
|
32 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.2)),
|
33 |
+
auxiliary_head=dict(
|
34 |
+
type='FCNHead',
|
35 |
+
in_channels=1024,
|
36 |
+
in_index=2,
|
37 |
+
channels=256,
|
38 |
+
num_convs=1,
|
39 |
+
concat_input=False,
|
40 |
+
dropout_ratio=0.1,
|
41 |
+
num_classes=19,
|
42 |
+
norm_cfg=norm_cfg,
|
43 |
+
align_corners=False,
|
44 |
+
loss_decode=dict(
|
45 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
|
46 |
+
# model training and testing settings
|
47 |
+
train_cfg=dict(),
|
48 |
+
test_cfg=dict(mode='whole'))
|