EC-Seq2Seq
Collection
12 items
•
Updated
This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
---|---|---|---|---|---|---|
0.5253 | 1.0 | 663 | 0.4895 | 0.8217 | 0.6309 | 0.695 |
0.5385 | 2.0 | 1326 | 0.4719 | 0.822 | 0.6307 | 0.6953 |
0.5255 | 3.0 | 1989 | 0.4579 | 0.8225 | 0.631 | 0.6954 |
0.4927 | 4.0 | 2652 | 0.4510 | 0.824 | 0.6315 | 0.6965 |
0.484 | 5.0 | 3315 | 0.4426 | 0.8254 | 0.6323 | 0.6974 |
0.4691 | 6.0 | 3978 | 0.4383 | 0.8241 | 0.6311 | 0.6962 |
0.4546 | 7.0 | 4641 | 0.4319 | 0.8248 | 0.6322 | 0.6969 |
0.4431 | 8.0 | 5304 | 0.4270 | 0.8254 | 0.633 | 0.6977 |
0.4548 | 9.0 | 5967 | 0.4257 | 0.8257 | 0.6322 | 0.6976 |
0.4335 | 10.0 | 6630 | 0.4241 | 0.8271 | 0.6333 | 0.6986 |
0.4234 | 11.0 | 7293 | 0.4203 | 0.827 | 0.6341 | 0.6992 |
0.433 | 12.0 | 7956 | 0.4185 | 0.8279 | 0.6347 | 0.6998 |
0.4108 | 13.0 | 8619 | 0.4161 | 0.8285 | 0.6352 | 0.7004 |
0.4101 | 14.0 | 9282 | 0.4133 | 0.8289 | 0.6356 | 0.7008 |
0.4155 | 15.0 | 9945 | 0.4149 | 0.8279 | 0.635 | 0.6998 |
0.3991 | 16.0 | 10608 | 0.4124 | 0.8289 | 0.6353 | 0.7005 |
0.3962 | 17.0 | 11271 | 0.4113 | 0.829 | 0.6353 | 0.7006 |
0.3968 | 18.0 | 11934 | 0.4114 | 0.8285 | 0.6352 | 0.7002 |
0.3962 | 19.0 | 12597 | 0.4100 | 0.8282 | 0.6346 | 0.6998 |
0.3771 | 20.0 | 13260 | 0.4078 | 0.829 | 0.6352 | 0.7005 |
0.3902 | 21.0 | 13923 | 0.4083 | 0.8295 | 0.6351 | 0.7006 |
0.3811 | 22.0 | 14586 | 0.4077 | 0.8276 | 0.6346 | 0.6995 |
0.38 | 23.0 | 15249 | 0.4076 | 0.8281 | 0.6346 | 0.6997 |
0.3695 | 24.0 | 15912 | 0.4059 | 0.8277 | 0.6344 | 0.6993 |
0.3665 | 25.0 | 16575 | 0.4043 | 0.8278 | 0.6343 | 0.6992 |
0.3728 | 26.0 | 17238 | 0.4059 | 0.8279 | 0.6346 | 0.6994 |
0.3669 | 27.0 | 17901 | 0.4048 | 0.8271 | 0.6342 | 0.6991 |
0.3702 | 28.0 | 18564 | 0.4058 | 0.8265 | 0.6338 | 0.6985 |
0.3674 | 29.0 | 19227 | 0.4049 | 0.8277 | 0.6345 | 0.6993 |
0.364 | 30.0 | 19890 | 0.4048 | 0.8273 | 0.6341 | 0.699 |
0.3618 | 31.0 | 20553 | 0.4041 | 0.828 | 0.6349 | 0.6997 |
0.3609 | 32.0 | 21216 | 0.4040 | 0.8275 | 0.6346 | 0.6994 |
0.357 | 33.0 | 21879 | 0.4037 | 0.8278 | 0.6348 | 0.6996 |
0.3638 | 34.0 | 22542 | 0.4038 | 0.8275 | 0.634 | 0.6989 |
0.3551 | 35.0 | 23205 | 0.4035 | 0.8275 | 0.6344 | 0.6992 |
0.358 | 36.0 | 23868 | 0.4035 | 0.8279 | 0.6347 | 0.6995 |
0.3519 | 37.0 | 24531 | 0.4034 | 0.8277 | 0.6343 | 0.6992 |
0.359 | 38.0 | 25194 | 0.4035 | 0.8281 | 0.6346 | 0.6996 |
0.3542 | 39.0 | 25857 | 0.4033 | 0.8281 | 0.6346 | 0.6996 |
0.3592 | 40.0 | 26520 | 0.4032 | 0.8281 | 0.6346 | 0.6996 |