Edit model card

t5-small-paraphrase-pubmed

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4032
  • Rouge2 Precision: 0.8281
  • Rouge2 Recall: 0.6346
  • Rouge2 Fmeasure: 0.6996

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure
0.5253 1.0 663 0.4895 0.8217 0.6309 0.695
0.5385 2.0 1326 0.4719 0.822 0.6307 0.6953
0.5255 3.0 1989 0.4579 0.8225 0.631 0.6954
0.4927 4.0 2652 0.4510 0.824 0.6315 0.6965
0.484 5.0 3315 0.4426 0.8254 0.6323 0.6974
0.4691 6.0 3978 0.4383 0.8241 0.6311 0.6962
0.4546 7.0 4641 0.4319 0.8248 0.6322 0.6969
0.4431 8.0 5304 0.4270 0.8254 0.633 0.6977
0.4548 9.0 5967 0.4257 0.8257 0.6322 0.6976
0.4335 10.0 6630 0.4241 0.8271 0.6333 0.6986
0.4234 11.0 7293 0.4203 0.827 0.6341 0.6992
0.433 12.0 7956 0.4185 0.8279 0.6347 0.6998
0.4108 13.0 8619 0.4161 0.8285 0.6352 0.7004
0.4101 14.0 9282 0.4133 0.8289 0.6356 0.7008
0.4155 15.0 9945 0.4149 0.8279 0.635 0.6998
0.3991 16.0 10608 0.4124 0.8289 0.6353 0.7005
0.3962 17.0 11271 0.4113 0.829 0.6353 0.7006
0.3968 18.0 11934 0.4114 0.8285 0.6352 0.7002
0.3962 19.0 12597 0.4100 0.8282 0.6346 0.6998
0.3771 20.0 13260 0.4078 0.829 0.6352 0.7005
0.3902 21.0 13923 0.4083 0.8295 0.6351 0.7006
0.3811 22.0 14586 0.4077 0.8276 0.6346 0.6995
0.38 23.0 15249 0.4076 0.8281 0.6346 0.6997
0.3695 24.0 15912 0.4059 0.8277 0.6344 0.6993
0.3665 25.0 16575 0.4043 0.8278 0.6343 0.6992
0.3728 26.0 17238 0.4059 0.8279 0.6346 0.6994
0.3669 27.0 17901 0.4048 0.8271 0.6342 0.6991
0.3702 28.0 18564 0.4058 0.8265 0.6338 0.6985
0.3674 29.0 19227 0.4049 0.8277 0.6345 0.6993
0.364 30.0 19890 0.4048 0.8273 0.6341 0.699
0.3618 31.0 20553 0.4041 0.828 0.6349 0.6997
0.3609 32.0 21216 0.4040 0.8275 0.6346 0.6994
0.357 33.0 21879 0.4037 0.8278 0.6348 0.6996
0.3638 34.0 22542 0.4038 0.8275 0.634 0.6989
0.3551 35.0 23205 0.4035 0.8275 0.6344 0.6992
0.358 36.0 23868 0.4035 0.8279 0.6347 0.6995
0.3519 37.0 24531 0.4034 0.8277 0.6343 0.6992
0.359 38.0 25194 0.4035 0.8281 0.6346 0.6996
0.3542 39.0 25857 0.4033 0.8281 0.6346 0.6996
0.3592 40.0 26520 0.4032 0.8281 0.6346 0.6996

Framework versions

  • Transformers 4.12.3
  • Pytorch 1.9.0+cu111
  • Datasets 1.15.1
  • Tokenizers 0.10.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including gayanin/t5-small-paraphrase-pubmed