Edit model card

Usage:

  1. Corrupted span prediction.
## Example from here: https://huggingface.co/docs/transformers/en/model_doc/byt5
tokenizer = AutoTokenizer.from_pretrained("francois-meyer/nguni-byt5-large")
model = AutoModelForSeq2SeqLM.from_pretrained("francois-meyer/nguni-byt5-large")
#model = T5ForConditionalGeneration.from_pretrained(model_path)

input_ids_prompt = "The dog chases a ball in the park."
input_ids = tokenizer(input_ids_prompt).input_ids

input_ids = torch.tensor([input_ids[:8] + [258] + input_ids[14:21] + [257] + input_ids[28:]]) ## Corruption

output_ids = model.generate(input_ids, max_length=100)[0].tolist()

output_ids_list = []
start_token = 0
sentinel_token = 258
while sentinel_token in output_ids:
    split_idx = output_ids.index(sentinel_token)
    output_ids_list.append(output_ids[start_token:split_idx])
    start_token = split_idx
    sentinel_token -= 1

output_ids_list.append(output_ids[start_token:])
output_string = tokenizer.batch_decode(output_ids_list)
print(output_string)
  1. For any other task, you will need to fine-tune it like any other T5, mT5, byT5 model.
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.