See axolotl config
axolotl version: 0.4.1
base_model: google/gemma-2-2b
model_type: Gemma2ForCausalLM
tokenizer_type: AutoTokenizer
chat_template: gemma
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: flydust/Magpie-100k-Gemma2-9B
type: sharegpt
chat_template: gemma
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: axolotl_out/gemma-2-2b-magpie-gemma2-9b
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: SynDa
wandb_entity:
wandb_watch:
wandb_name: gemma-2-2b-magpie-gemma2-9b
wandb_log_model:
hub_model_id: flydust/gemma-2-2b-magpie-gemma2-9b
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
# Disable flash attention
# flash_attention: false
# sdp_attention: falses
eager_attention: true
warmup_ratio: 0.1
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
gemma-2-2b-magpie-gemma2-9b
This model is a fine-tuned version of google/gemma-2-2b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6998
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 79
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.7852 | 0.0023 | 1 | 1.1984 |
0.8091 | 0.2011 | 86 | 0.8370 |
0.7305 | 0.4022 | 172 | 0.7686 |
0.6761 | 0.6033 | 258 | 0.7394 |
0.6618 | 0.8044 | 344 | 0.7141 |
0.6197 | 1.0056 | 430 | 0.6983 |
0.5014 | 1.1932 | 516 | 0.7058 |
0.4924 | 1.3943 | 602 | 0.7018 |
0.4887 | 1.5954 | 688 | 0.6997 |
0.4696 | 1.7966 | 774 | 0.6998 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for flydust/gemma-2-2b-magpie-gemma2-9b
Base model
google/gemma-2-2b