Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: microsoft/Phi-3.5-mini-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
chat_template: phi_3

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: flydust/CodeGen_50000_Test
    type: chat_template
    field_messages: conversations
    # The key in the message turn that contains the role. Default is "role".
    message_field_role: from
    # The key in the message turn that contains the content. Default is "content".
    message_field_content: value
    # Optional[Dict[str, List]]. Roles mapping for the messages.
    roles:
      user: ["human", "user"]
      assistant: ["gpt", "assistant", "ai"]
      system: ["system"]


dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: axolotl_out/Phi-3.5-mini-instruct-Code50000-Test

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

wandb_project: SynDa
wandb_entity:
wandb_watch:
wandb_name: Phi-3.5-mini-instruct-Code50000-Test
wandb_log_model:
hub_model_id: flydust/Phi-3.5-mini-instruct-Code50000-Test

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
# Disable flash attention
flash_attention: true
# sdp_attention: falses
# eager_attention: true

warmup_ratio: 0.1
evals_per_epoch: 10
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

Phi-3.5-mini-instruct-Code50000-Test

This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1712

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 21
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.4415 0.0093 1 0.4636
0.2376 0.1019 11 0.2367
0.2014 0.2037 22 0.2002
0.1824 0.3056 33 0.1895
0.1728 0.4074 44 0.1817
0.1764 0.5093 55 0.1786
0.1822 0.6111 66 0.1766
0.1661 0.7130 77 0.1750
0.171 0.8148 88 0.1740
0.1577 0.9167 99 0.1741
0.1615 1.0162 110 0.1722
0.1551 1.1181 121 0.1720
0.1676 1.2199 132 0.1724
0.1583 1.3218 143 0.1714
0.164 1.4236 154 0.1713
0.1581 1.5255 165 0.1717
0.1496 1.6273 176 0.1707
0.1563 1.7292 187 0.1710
0.1518 1.8310 198 0.1707
0.1687 1.9329 209 0.1712

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.1+cu124
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
3.82B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for flydust/Phi-3.5-mini-instruct-Code50000-Test

Finetuned
(37)
this model